Distributed Zero-Knowledge Proofs Over Networks

被引:0
|
作者
Bick, Aviv [1 ]
Kol, Gillat [2 ]
Oshman, Rotem [1 ]
机构
[1] Tel Aviv Univ, Blavatnik Sch Comp Sci, Tel Aviv, Israel
[2] Princeton Univ, Comp Sci Dept, Princeton, NJ USA
基金
以色列科学基金会; 美国国家科学基金会;
关键词
VERIFICATION; COMPLEXITY; HARDNESS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Zero knowledge proofs are one of the most influential concepts in theoretical computer science. In the seminal definition due to Goldwasser, Micali and Rackoff dating back to the 1980s, a computationally-bounded verifier interacts with a powerful but untrusted prover, with the goal of becoming convinced that the input is in some language. In addition to the usual requirements of completeness and soundness, in a zero knowledge proof, we protect the prover's knowledge: assuming the prover is honest, anything that the verifier can deduce after interacting with the prover, it could have deduced by itself. Zero knowledge proofs have found many applications within theoretical computer science and beyond, e.g., in cryptography, client-cloud computing, blockchains and cryptocurrencies, electronic voting and auctions, and in the financial industry. We define and study the notion of distributed zero knowledge proofs, reconciling the computational notion of zero-knowledge with the communication-based paradigm of distributed graph algorithms. In our setting, a network of verifiers interacts with an untrusted prover to decide some distributed language. As is usually the case in distributed graph algorithms, we assume that the verifiers have local views of the network and each only knows its neighbors. The prover, on the other hand, is assumed to know the entire network graph, as well as any input that the verifier may possess. As in the computational centralized setting, the protocol we design should protect this knowledge. In particular, due to the dual role of the underlying graph in distributed graph algorithms, serving as both the communication topology and the input to the problem, our protocol must protect the graph itself. We construct communication-efficient distributed zero knowledge proofs for two central problems: the 3-coloring problem, one of the poster children of computational zero-knowledge, and for the spanning-tree verification problem, a fundamental building block for designing graph algorithms. We also give a general scheme for converting proof labeling-schemes to distributed zero-knowledge protocols with related parameters. Our protocols combine ideas from computational complexity, distributed computing, and cryptography.
引用
收藏
页码:2426 / 2458
页数:33
相关论文
共 50 条
  • [41] On relationships between statistical zero-knowledge proofs
    Okamoto, T
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2000, 60 (01) : 47 - 108
  • [42] HOW TO UTILIZE THE RANDOMNESS OF ZERO-KNOWLEDGE PROOFS
    OKAMOTO, T
    OHTA, K
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1991, 537 : 456 - 475
  • [43] Practical Zero-Knowledge Proofs for Circuit Evaluation
    Ghadafi, Essam
    Smart, Nigel P.
    Warinschi, Bogdan
    [J]. CRYPTOGRAPHY AND CODING, PROCEEDINGS, 2009, 5921 : 469 - 494
  • [44] Physical Zero-Knowledge Proofs for Five Cells
    Ruangwises, Suthee
    [J]. PROGRESS IN CRYPTOLOGY, LATINCRYPT 2023, 2023, 14168 : 315 - 330
  • [45] Zero-Knowledge Proofs via Polynomial Representations
    Di Crescenzo, Giovanni
    Fedyukovych, Vadym
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2012, 2012, 7464 : 335 - 347
  • [46] An Introduction to Zero-Knowledge Proofs in Blockchains and Economics
    Berentsen, Aleksander
    Lenzi, Jeremias
    Nyffenegger, Remo
    [J]. FEDERAL RESERVE BANK OF ST LOUIS REVIEW, 2023, 105 (04): : 280 - 294
  • [47] ZPiE: Zero-Knowledge Proofs in Embedded Systems
    Salleras, Xavier
    Daza, Vanesa
    [J]. MATHEMATICS, 2021, 9 (20)
  • [48] Efficient Zero-Knowledge Proofs for Commitments from Learning with Errors over Rings
    Benhamouda, Fabrice
    Krenn, Stephan
    Lyubashevsky, Vadim
    Pietrzak, Krzysztof
    [J]. COMPUTER SECURITY - ESORICS 2015, PT I, 2015, 9326 : 305 - 325
  • [49] Round-optimal zero-knowledge proofs of knowledge for NP
    Li HongDa
    Feng DengGuo
    Li Bao
    Xue HaiXia
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2012, 55 (11) : 2473 - 2484
  • [50] Round-optimal zero-knowledge proofs of knowledge for NP
    LI HongDa1
    2State Key Lab of Information Security
    [J]. Science China(Information Sciences), 2012, 55 (11) : 2473 - 2484