Distributed Zero-Knowledge Proofs Over Networks

被引:0
|
作者
Bick, Aviv [1 ]
Kol, Gillat [2 ]
Oshman, Rotem [1 ]
机构
[1] Tel Aviv Univ, Blavatnik Sch Comp Sci, Tel Aviv, Israel
[2] Princeton Univ, Comp Sci Dept, Princeton, NJ USA
基金
以色列科学基金会; 美国国家科学基金会;
关键词
VERIFICATION; COMPLEXITY; HARDNESS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Zero knowledge proofs are one of the most influential concepts in theoretical computer science. In the seminal definition due to Goldwasser, Micali and Rackoff dating back to the 1980s, a computationally-bounded verifier interacts with a powerful but untrusted prover, with the goal of becoming convinced that the input is in some language. In addition to the usual requirements of completeness and soundness, in a zero knowledge proof, we protect the prover's knowledge: assuming the prover is honest, anything that the verifier can deduce after interacting with the prover, it could have deduced by itself. Zero knowledge proofs have found many applications within theoretical computer science and beyond, e.g., in cryptography, client-cloud computing, blockchains and cryptocurrencies, electronic voting and auctions, and in the financial industry. We define and study the notion of distributed zero knowledge proofs, reconciling the computational notion of zero-knowledge with the communication-based paradigm of distributed graph algorithms. In our setting, a network of verifiers interacts with an untrusted prover to decide some distributed language. As is usually the case in distributed graph algorithms, we assume that the verifiers have local views of the network and each only knows its neighbors. The prover, on the other hand, is assumed to know the entire network graph, as well as any input that the verifier may possess. As in the computational centralized setting, the protocol we design should protect this knowledge. In particular, due to the dual role of the underlying graph in distributed graph algorithms, serving as both the communication topology and the input to the problem, our protocol must protect the graph itself. We construct communication-efficient distributed zero knowledge proofs for two central problems: the 3-coloring problem, one of the poster children of computational zero-knowledge, and for the spanning-tree verification problem, a fundamental building block for designing graph algorithms. We also give a general scheme for converting proof labeling-schemes to distributed zero-knowledge protocols with related parameters. Our protocols combine ideas from computational complexity, distributed computing, and cryptography.
引用
收藏
页码:2426 / 2458
页数:33
相关论文
共 50 条
  • [31] Composition of Zero-Knowledge Proofs with Efficient Provers
    Birrelll, Eleanor
    Vadhan, Salil
    [J]. THEORY OF CRYPTOGRAPHY, PROCEEDINGS, 2010, 5978 : 572 - +
  • [32] Stacked Garbling for Disjunctive Zero-Knowledge Proofs
    Heath, David
    Kolesnikov, Vladimir
    [J]. ADVANCES IN CRYPTOLOGY - EUROCRYPT 2020, PT III, 2020, 12107 : 569 - 598
  • [33] Physical Zero-Knowledge Proofs of Physical Properties
    Fisch, Ben
    Freund, Daniel
    Naor, Moni
    [J]. ADVANCES IN CRYPTOLOGY - CRYPTO 2014, PT II, 2014, 8617 : 313 - 336
  • [34] PUBLICLY VERIFIABLE NONINTERACTIVE ZERO-KNOWLEDGE PROOFS
    LAPIDOT, D
    SHAMIR, A
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1991, 537 : 353 - 365
  • [35] On the Existence of Three Round Zero-Knowledge Proofs
    Fleischhacker, Nils
    Goyal, Vipul
    Jain, Abhishek
    [J]. ADVANCES IN CRYPTOLOGY - EUROCRYPT 2018, PT III, 2018, 10822 : 3 - 33
  • [36] Zero-Knowledge Proofs for Classical Planning Problems
    Correa, Augusto B.
    Buchner, Clemens
    Christen, Remo
    [J]. THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 10, 2023, : 11955 - 11962
  • [37] Computational soundness of symbolic zero-knowledge proofs
    Backes, Michael
    Unruh, Dominique
    [J]. JOURNAL OF COMPUTER SECURITY, 2010, 18 (06) : 1077 - 1155
  • [38] Probabilistically Checkable Proofs of Proximity with Zero-Knowledge
    Ishai, Yuval
    Weiss, Mor
    [J]. THEORY OF CRYPTOGRAPHY (TCC 2014), 2014, 8349 : 121 - 145
  • [39] HOW TO UTILIZE THE RANDOMNESS OF ZERO-KNOWLEDGE PROOFS
    OKAMOTO, T
    OHTA, K
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1991, 537 : 456 - 475
  • [40] Zero-Knowledge Proofs and Their Role within the Blockchain
    Williams, Alex
    [J]. Communications of the ACM, 2024, 67 (07) : 6 - 7