Lightweight, freestanding hybrids of graphene and hexagonal boron nitride foams

被引:0
|
作者
Galligan, Patrick Ryan [1 ,2 ]
Liu, Hongwei [1 ,2 ]
Wang, Guang [2 ,3 ]
Tamtaji, Mohsen [1 ,2 ,4 ]
Li, Yaxuan [1 ,2 ]
Tang, Tsz Wing [1 ,2 ]
Zhou, Yanguang [3 ,5 ]
Luo, Zhengtang [1 ,2 ,6 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Chem & Biol Engn, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[2] Hong Kong Univ Sci & Technol, William Mong Inst Nano Sci & Technol, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[3] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[4] Hong Kong Quantum AI Lab Ltd, Pak Shek Kok, Hong Kong, Peoples R China
[5] HKUST Shenzhen Hong Kong Collaborat Innovat Res In, Shenzhen, Guangdong, Peoples R China
[6] Hong Kong Univ Sci & Technol, Shenzhen Res Inst, 9 Yuexing First RD,Hitech Pk, Shenzhen 518057, Peoples R China
关键词
Graphene foam; Boron carbon nitride; Nickel template; Thermal Interface Materials; CHEMICAL-VAPOR-DEPOSITION; FEW-LAYER GRAPHENE; THERMAL-CONDUCTIVITY; TRIMETHYLAMINE BORANE; COMPOSITES; TRANSPORT; NETWORK; ARCHITECTURE; NANOSHEETS; AREA;
D O I
10.1016/j.compositesa.2024.108176
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lightweight boron carbon nitride foams which are a hybrid of graphene and hexagonal boron nitride (hBN), are produced using the nickel template method and remain freestanding after the etching of nickel without the stabilization of a polymer during etching. Chemical vapor deposition (CVD) precursors with varying carbon content were utilized, but only a 10% range of carbon atomic percentage variation is observed in the resulting boron carbon nitride foams due to the high carbon solubility of nickel. However, the cooling rate during the CVD process has a much more significant effect on the carbon content. Moreover, a 6.5 -fold increase in resistivity is observed for our foams compared to a graphene foam with an overall trend of decreasing resistance with increasing carbon content. Furthermore, when the foam is infiltrated with epoxy to form a composite at 0.3% volumetric percentage concentration, there is a 27% increase in the thermal conductivity over hBN foam composites. These foams are suitable to use as a substitute for graphene foams when a lower electrical conductivity is desired and could potentially be used as a thermal interface material if a higher pore density nickel template is utilized.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Layer speciation and electronic structure investigation of freestanding hexagonal boron nitride nanosheets
    Wang, Jian
    Wang, Zhiqiang
    Cho, Hyunjin
    Kim, Myung Jong
    Sham, T. K.
    Sun, Xuhui
    NANOSCALE, 2015, 7 (05) : 1718 - 1724
  • [32] Advancing quasi-freestanding epitaxial graphene electronics through integration of wafer scale hexagonal boron nitride dielectrics
    Bresnehan, Michael S.
    Hollander, Matthew J.
    Marucci, Rebecca L.
    LaBella, Michael
    Trumbull, Kathleen A.
    Cavalero, Randal
    Snyder, David W.
    Robinson, Joshua A.
    CARBON NANOTUBES, GRAPHENE, AND ASSOCIATED DEVICES V, 2012, 8462
  • [33] Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures
    Chun-Chung Chen
    Zhen Li
    Li Shi
    Stephen B. Cronin
    Nano Research, 2015, 8 : 666 - 672
  • [34] Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures
    Chen, Chun-Chung
    Li, Zhen
    Shi, Li
    Cronin, Stephen B.
    NANO RESEARCH, 2015, 8 (02) : 666 - 672
  • [35] Lightweight Hexagonal Boron Nitride Foam for CO2 Absorption
    Owuor, Peter Samora
    Park, Ok-Kyung
    Woellner, Cristiano F.
    Jalilov, Almaz S.
    Susarla, Sandhya
    Joyner, Jarin
    Ozden, Sehmus
    Duy, LuongXuan
    Salvatierra, Rodrigo Villegas
    Vajtai, Robert
    Tour, James M.
    Lou, Jun
    Galvao, Douglas Soares
    Tiwary, Chandra Sekhar
    Ajayan, Pulickel M.
    ACS NANO, 2017, 11 (09) : 8944 - 8952
  • [36] Flexible polyurethane foams reinforced with graphene and boron nitride nanofillers
    Li, Owen
    Tamrakar, Sandeep
    Iyigundogdu, Zeynep
    Mielewski, Debbie
    Wyss, Kevin
    Tour, James M.
    Kiziltas, Alper
    POLYMER COMPOSITES, 2023, 44 (03) : 1494 - 1511
  • [37] Commensurate-incommensurate transition in graphene on hexagonal boron nitride
    Woods, C. R.
    Britnell, L.
    Eckmann, A.
    Ma, R. S.
    Lu, J. C.
    Guo, H. M.
    Lin, X.
    Yu, G. L.
    Cao, Y.
    Gorbachev, R. V.
    Kretinin, A. V.
    Park, J.
    Ponomarenko, L. A.
    Katsnelson, M. I.
    Gornostyrev, Yu. N.
    Watanabe, K.
    Taniguchi, T.
    Casiraghi, C.
    Gao, H-J.
    Geim, A. K.
    Novoselov, K. S.
    NATURE PHYSICS, 2014, 10 (06) : 451 - 456
  • [38] Graphene quantum dots embedded in hexagonal boron nitride sheets
    Li, Junwen
    Shenoy, Vivek B.
    APPLIED PHYSICS LETTERS, 2011, 98 (01)
  • [39] Molecular dynamics of halogenated graphene - hexagonal boron nitride nanoribbons
    Nemnes, G. A.
    Visan, Camelia
    Anghel, D. V.
    Manolescu, A.
    5TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES (IC-MSQUARE 2016), 2016, 738
  • [40] Spin transport in fully hexagonal boron nitride encapsulated graphene
    Gurram, M.
    Omar, S.
    Zihlmann, S.
    Makk, P.
    Schoenenberger, C.
    van Wees, B. J.
    PHYSICAL REVIEW B, 2016, 93 (11)