Lightweight, freestanding hybrids of graphene and hexagonal boron nitride foams

被引:0
|
作者
Galligan, Patrick Ryan [1 ,2 ]
Liu, Hongwei [1 ,2 ]
Wang, Guang [2 ,3 ]
Tamtaji, Mohsen [1 ,2 ,4 ]
Li, Yaxuan [1 ,2 ]
Tang, Tsz Wing [1 ,2 ]
Zhou, Yanguang [3 ,5 ]
Luo, Zhengtang [1 ,2 ,6 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Chem & Biol Engn, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[2] Hong Kong Univ Sci & Technol, William Mong Inst Nano Sci & Technol, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[3] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[4] Hong Kong Quantum AI Lab Ltd, Pak Shek Kok, Hong Kong, Peoples R China
[5] HKUST Shenzhen Hong Kong Collaborat Innovat Res In, Shenzhen, Guangdong, Peoples R China
[6] Hong Kong Univ Sci & Technol, Shenzhen Res Inst, 9 Yuexing First RD,Hitech Pk, Shenzhen 518057, Peoples R China
关键词
Graphene foam; Boron carbon nitride; Nickel template; Thermal Interface Materials; CHEMICAL-VAPOR-DEPOSITION; FEW-LAYER GRAPHENE; THERMAL-CONDUCTIVITY; TRIMETHYLAMINE BORANE; COMPOSITES; TRANSPORT; NETWORK; ARCHITECTURE; NANOSHEETS; AREA;
D O I
10.1016/j.compositesa.2024.108176
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lightweight boron carbon nitride foams which are a hybrid of graphene and hexagonal boron nitride (hBN), are produced using the nickel template method and remain freestanding after the etching of nickel without the stabilization of a polymer during etching. Chemical vapor deposition (CVD) precursors with varying carbon content were utilized, but only a 10% range of carbon atomic percentage variation is observed in the resulting boron carbon nitride foams due to the high carbon solubility of nickel. However, the cooling rate during the CVD process has a much more significant effect on the carbon content. Moreover, a 6.5 -fold increase in resistivity is observed for our foams compared to a graphene foam with an overall trend of decreasing resistance with increasing carbon content. Furthermore, when the foam is infiltrated with epoxy to form a composite at 0.3% volumetric percentage concentration, there is a 27% increase in the thermal conductivity over hBN foam composites. These foams are suitable to use as a substitute for graphene foams when a lower electrical conductivity is desired and could potentially be used as a thermal interface material if a higher pore density nickel template is utilized.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Thermal conductance of graphene/hexagonal boron nitride heterostructures
    Lu, Simon
    McGaughey, Alan J. H.
    JOURNAL OF APPLIED PHYSICS, 2017, 121 (11)
  • [22] Electronic structure of graphene nanoribbons on hexagonal boron nitride
    Gani, Yohanes S.
    Abergel, D. S. L.
    Rossi, Enrico
    PHYSICAL REVIEW B, 2018, 98 (20)
  • [23] Etched graphene quantum dots on hexagonal boron nitride
    Engels, S.
    Epping, A.
    Volk, C.
    Korte, S.
    Voigtlaender, B.
    Watanabe, K.
    Taniguchi, T.
    Trellenkamp, S.
    Stampfer, C.
    APPLIED PHYSICS LETTERS, 2013, 103 (07)
  • [24] Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial
    Dai, S.
    Ma, Q.
    Liu, M. K.
    Andersen, T.
    Fei, Z.
    Goldflam, M. D.
    Wagner, M.
    Watanabe, K.
    Taniguchi, T.
    Thiemens, M.
    Keilmann, F.
    Janssen, G. C. A. M.
    Zhu, S-E.
    Jarillo-Herrero, P.
    Fogler, M. M.
    Basov, D. N.
    NATURE NANOTECHNOLOGY, 2015, 10 (08) : 682 - 686
  • [25] Electrically dependent bandgaps in graphene on hexagonal boron nitride
    Kaplan, D.
    Recine, G.
    Swaminathan, V.
    APPLIED PHYSICS LETTERS, 2014, 104 (13)
  • [26] Origin of band gaps in graphene on hexagonal boron nitride
    Jeil Jung
    Ashley M. DaSilva
    Allan H. MacDonald
    Shaffique Adam
    Nature Communications, 6
  • [27] Effective Cleaning of Hexagonal Boron Nitride for Graphene Devices
    Garcia, Andrei G. F.
    Neumann, Michael
    Amet, Francois
    Williams, James R.
    Watanabe, Kenji
    Taniguchi, Takashi
    Goldhaber-Gordon, David
    NANO LETTERS, 2012, 12 (09) : 4449 - 4454
  • [28] Thermally Induced Graphene Rotation on Hexagonal Boron Nitride
    Wang, Duoming
    Chen, Guorui
    Li, Chaokai
    Cheng, Meng
    Yang, Wei
    Wu, Shuang
    Xie, Guibai
    Zhang, Jing
    Zhao, Jing
    Lu, Xiaobo
    Chen, Peng
    Wang, Guole
    Meng, Jianling
    Tang, Jian
    Yang, Rong
    He, Congli
    Liu, Donghua
    Shi, Dongxia
    Watanabe, Kenji
    Taniguchi, Takashi
    Feng, Ji
    Zhang, Yuanbo
    Zhang, Guangyu
    PHYSICAL REVIEW LETTERS, 2016, 116 (12)
  • [29] Origin of band gaps in graphene on hexagonal boron nitride
    Jung, Jeil
    DaSilva, Ashley M.
    MacDonald, Allan H.
    Adam, Shaffique
    NATURE COMMUNICATIONS, 2015, 6
  • [30] Electronic structure of superlattices of graphene and hexagonal boron nitride
    Kaloni, T. P.
    Cheng, Y. C.
    Schwingenschloegl, U.
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (03) : 919 - 922