Integral representations of Eta functions and fractional calculus

被引:1
|
作者
Sedaghat, Salameh [1 ]
Marcellan, Francisco [2 ]
机构
[1] Buein Zahra Tech Univ, Dept Math, Qazvin, Iran
[2] Univ Carlos III Madrid, Dept Matemat, Leganes, Spain
关键词
Eta functions; Sturm-Liouville eigenvalue problems; Fractional calculus; Special functions;
D O I
10.1007/s11075-024-01885-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this contribution we deal with Eta functions and their representations as fractional derivatives and fractional integrals. A class of fractional Sturm-Liouville eigenvalue problems is studied. The analytic representation of their eigensolutions is pointed out as well as the orthogonality of the corresponding eigenfunctions.
引用
收藏
页码:491 / 504
页数:14
相关论文
共 50 条
  • [31] Integral inequalities via fractional quantum calculus
    Sudsutad, Weerawat
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, : 1 - 15
  • [32] Some Integral Inequalities in ?-Fractional Calculus and Their Applications
    Srivastava, Hari Mohan
    Mohammed, Pshtiwan Othman
    Almutairi, Ohud
    Kashuri, Artion
    Hamed, Y. S.
    MATHEMATICS, 2022, 10 (03)
  • [33] Fractional calculus for power functions and eigenvalues of the fractional Laplacian
    Bartłlomiej Dyda
    Fractional Calculus and Applied Analysis, 2012, 15 : 536 - 555
  • [34] Fractional calculus for power functions and eigenvalues of the fractional Laplacian
    Dyda, Bartlomiej
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (04) : 536 - 555
  • [35] Fractional variational calculus for nondifferentiable functions
    Almeida, Ricardo
    Torres, Delfim F. M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (10) : 3097 - 3104
  • [36] Fractional Calculus of Piecewise Continuous Functions
    Ortigueira, Manuel Duarte
    FRACTAL AND FRACTIONAL, 2025, 9 (02)
  • [37] A Guide to Special Functions in Fractional Calculus
    Kiryakova, Virginia
    MATHEMATICS, 2021, 9 (01) : 1 - 40
  • [38] ON THE FRACTIONAL CALCULUS FUNCTIONS OF A FRACTAL FUNCTION
    Yao Kui Su Weiyi Zhou SongpingDept. of Math.
    AppliedMathematics:AJournalofChineseUniversities, 2002, (04) : 377 - 381
  • [39] EXPONENTIAL FUNCTIONS OF DISCRETE FRACTIONAL CALCULUS
    Acar, Nihan
    Atici, Ferhan M.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2013, 7 (02) : 343 - 353
  • [40] On Weighted Fractional Calculus With Respect to Functions
    Zahra, Tazeen
    Fahad, Hafiz Muhammad
    Rehman, Mujeeb ur
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (05) : 5642 - 5659