Integral representations of Eta functions and fractional calculus

被引:1
|
作者
Sedaghat, Salameh [1 ]
Marcellan, Francisco [2 ]
机构
[1] Buein Zahra Tech Univ, Dept Math, Qazvin, Iran
[2] Univ Carlos III Madrid, Dept Matemat, Leganes, Spain
关键词
Eta functions; Sturm-Liouville eigenvalue problems; Fractional calculus; Special functions;
D O I
10.1007/s11075-024-01885-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this contribution we deal with Eta functions and their representations as fractional derivatives and fractional integrals. A class of fractional Sturm-Liouville eigenvalue problems is studied. The analytic representation of their eigensolutions is pointed out as well as the orthogonality of the corresponding eigenfunctions.
引用
收藏
页码:491 / 504
页数:14
相关论文
共 50 条
  • [11] Path integral solution by fractional calculus
    Cottone, Giulio
    Di Paola, Mario
    Pirrotta, Antonina
    ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96
  • [12] Fractional Functions and their Representations
    L. P. Castro
    S. Saitoh
    Complex Analysis and Operator Theory, 2013, 7 : 1049 - 1063
  • [13] Fractional Functions and their Representations
    Castro, L. P.
    Saitoh, S.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2013, 7 (04) : 1049 - 1063
  • [14] The mellin integral transform in fractional calculus
    Yuri Luchko
    Virginia Kiryakova
    Fractional Calculus and Applied Analysis, 2013, 16 : 405 - 430
  • [15] The mellin integral transform in fractional calculus
    Luchko, Yuri
    Kiryakova, Virginia
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (02) : 405 - 430
  • [16] Fractional calculus and analytic functions
    Kalia, RN
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1996, 4 (1-2) : 203 - 210
  • [17] Some Fractional Calculus Results Based on Extended Gauss Hypergeometric Functions and Integral Transform
    Sharma, Sunil Kumar
    Shekhawat, Ashok Singh
    JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, 2019, 14 (04): : 538 - 557
  • [18] Series representations for fractional-calculus operators involving generalised Mittag-Leffler functions
    Fernandez, Arran
    Baleanu, Dumitru
    Srivastava, H. M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 67 : 517 - 527
  • [19] Integral representations of holomorphic functions
    I. I. Bavrin
    Doklady Mathematics, 2008, 77 : 300 - 301
  • [20] DYADIC INTEGRAL CALCULUS FOR HAAR FUNCTIONS
    SPLETTSTOSSER, W
    WAGNER, HJ
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1977, 57 (09): : 527 - 541