Enhanced deep learning model for precise nodule localization and recurrence risk prediction following curative-intent surgery for lung cancer
被引:1
|
作者:
Park, Jihwan
论文数: 0引用数: 0
h-index: 0
机构:
Dankook Univ, Coll Liberal Arts, Cheonan Si, Chungcheongnam, South KoreaDankook Univ, Coll Liberal Arts, Cheonan Si, Chungcheongnam, South Korea
Park, Jihwan
[1
]
Rho, Mi Jung
论文数: 0引用数: 0
h-index: 0
机构:
Dankook Univ, Coll Hlth Sci, Cheonan Si, Chungcheongnam, South KoreaDankook Univ, Coll Liberal Arts, Cheonan Si, Chungcheongnam, South Korea
Rho, Mi Jung
[2
]
Moon, Mi Hyoung
论文数: 0引用数: 0
h-index: 0
机构:
Catholic Univ Korea, Seoul St Marys Hosp, Coll Med, Dept Thorac & Cardiovasc Surg, Seoul, South KoreaDankook Univ, Coll Liberal Arts, Cheonan Si, Chungcheongnam, South Korea
Moon, Mi Hyoung
[3
]
机构:
[1] Dankook Univ, Coll Liberal Arts, Cheonan Si, Chungcheongnam, South Korea
[2] Dankook Univ, Coll Hlth Sci, Cheonan Si, Chungcheongnam, South Korea
[3] Catholic Univ Korea, Seoul St Marys Hosp, Coll Med, Dept Thorac & Cardiovasc Surg, Seoul, South Korea
Purpose Radical surgery is the primary treatment for early-stage resectable lung cancer, yet recurrence after curative surgery is not uncommon. Identifying patients at high risk of recurrence using preoperative computed tomography (CT) images could enable more aggressive surgical approaches, shorter surveillance intervals, and intensified adjuvant treatments. This study aims to analyze lung cancer sites in CT images to predict potential recurrences in high-risk individuals.Methods We retrieved anonymized imaging and clinical data from an institutional database, focusing on patients who underwent curative pulmonary resections for non-small cell lung cancers. Our study used a deep learning model, the Mask Region-based Convolutional Neural Network (MRCNN), to predict cancer locations and assign recurrence classification scores. To find optimized trained weighted values in the model, we developed preprocessing python codes, adjusted dynamic learning rate, and modifying hyper parameter in the model.Results The model training completed; we performed classifications using the validation dataset. The results, including the confusion matrix, demonstrated performance metrics: bounding box (0.390), classification (0.034), mask (0.266), Region Proposal Network (RPN) bounding box (0.341), and RPN classification (0.054). The model successfully identified lung cancer recurrence sites, which were then accurately mapped onto chest CT images to highlight areas of primary concern.Conclusion The trained model allows clinicians to focus on lung regions where cancer recurrence is more likely, acting as a significant aid in the detection and diagnosis of lung cancer. Serving as a clinical decision support system, it offers substantial support in managing lung cancer patients.
机构:
Amer Canc Soc, 250 Williams St NW, Atlanta, GA 30303 USAAmer Canc Soc, 250 Williams St NW, Atlanta, GA 30303 USA
Sineshaw, Helmneh M.
Wu, Xiao-Cheng
论文数: 0引用数: 0
h-index: 0
机构:
Louisiana State Univ, Hlth Sci Ctr, Louisiana Tumor Registry, New Orleans, LA USAAmer Canc Soc, 250 Williams St NW, Atlanta, GA 30303 USA
Wu, Xiao-Cheng
Flanders, W. Dana
论文数: 0引用数: 0
h-index: 0
机构:
Amer Canc Soc, 250 Williams St NW, Atlanta, GA 30303 USA
Emory Univ, Rollins Sch Publ Hlth, Atlanta, GA 30322 USAAmer Canc Soc, 250 Williams St NW, Atlanta, GA 30303 USA
Flanders, W. Dana
Osarogiagbon, Raymond Uyiosa
论文数: 0引用数: 0
h-index: 0
机构:
Baptist Canc Ctr, Memphis, TN USAAmer Canc Soc, 250 Williams St NW, Atlanta, GA 30303 USA
Osarogiagbon, Raymond Uyiosa
Jemal, Ahmedin
论文数: 0引用数: 0
h-index: 0
机构:
Amer Canc Soc, 250 Williams St NW, Atlanta, GA 30303 USAAmer Canc Soc, 250 Williams St NW, Atlanta, GA 30303 USA
机构:
Kaiser Permanente Colorado, Inst Hlth Res, Aurora, CO USA
Univ Calif San Diego, Dept Med, Div Pulm Crit Care & Sleep Med, La Jolla, CA 92093 USAKaiser Permanente Colorado, Inst Hlth Res, Aurora, CO USA
Ha, Duc
Kerr, Jacqueline
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Family Med & Publ Hlth, Div Behav Med, La Jolla, CA 92093 USAKaiser Permanente Colorado, Inst Hlth Res, Aurora, CO USA
Kerr, Jacqueline
Ries, Andrew L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Med, Div Pulm Crit Care & Sleep Med, La Jolla, CA 92093 USAKaiser Permanente Colorado, Inst Hlth Res, Aurora, CO USA
Ries, Andrew L.
Fuster, Mark M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Med, Div Pulm Crit Care & Sleep Med, La Jolla, CA 92093 USA
VA San Diego Healthcare Syst, Sect Pulm & Crit Care Md, San Diego, CA USAKaiser Permanente Colorado, Inst Hlth Res, Aurora, CO USA
Fuster, Mark M.
Lippman, Scott M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Moores Canc Ctr, La Jolla, CA 92093 USAKaiser Permanente Colorado, Inst Hlth Res, Aurora, CO USA
Lippman, Scott M.
Murphy, James D.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Radiat Med & Appl Sci, Gastrointestinal & Palliat Radiat Oncol, La Jolla, CA 92093 USAKaiser Permanente Colorado, Inst Hlth Res, Aurora, CO USA