Enhanced deep learning model for precise nodule localization and recurrence risk prediction following curative-intent surgery for lung cancer

被引:1
|
作者
Park, Jihwan [1 ]
Rho, Mi Jung [2 ]
Moon, Mi Hyoung [3 ]
机构
[1] Dankook Univ, Coll Liberal Arts, Cheonan Si, Chungcheongnam, South Korea
[2] Dankook Univ, Coll Hlth Sci, Cheonan Si, Chungcheongnam, South Korea
[3] Catholic Univ Korea, Seoul St Marys Hosp, Coll Med, Dept Thorac & Cardiovasc Surg, Seoul, South Korea
来源
PLOS ONE | 2024年 / 19卷 / 07期
关键词
STAGE-I; PROGNOSTIC FACTORS;
D O I
10.1371/journal.pone.0300442
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Purpose Radical surgery is the primary treatment for early-stage resectable lung cancer, yet recurrence after curative surgery is not uncommon. Identifying patients at high risk of recurrence using preoperative computed tomography (CT) images could enable more aggressive surgical approaches, shorter surveillance intervals, and intensified adjuvant treatments. This study aims to analyze lung cancer sites in CT images to predict potential recurrences in high-risk individuals.Methods We retrieved anonymized imaging and clinical data from an institutional database, focusing on patients who underwent curative pulmonary resections for non-small cell lung cancers. Our study used a deep learning model, the Mask Region-based Convolutional Neural Network (MRCNN), to predict cancer locations and assign recurrence classification scores. To find optimized trained weighted values in the model, we developed preprocessing python codes, adjusted dynamic learning rate, and modifying hyper parameter in the model.Results The model training completed; we performed classifications using the validation dataset. The results, including the confusion matrix, demonstrated performance metrics: bounding box (0.390), classification (0.034), mask (0.266), Region Proposal Network (RPN) bounding box (0.341), and RPN classification (0.054). The model successfully identified lung cancer recurrence sites, which were then accurately mapped onto chest CT images to highlight areas of primary concern.Conclusion The trained model allows clinicians to focus on lung regions where cancer recurrence is more likely, acting as a significant aid in the detection and diagnosis of lung cancer. Serving as a clinical decision support system, it offers substantial support in managing lung cancer patients.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Variations in Receipt of Curative-Intent Surgery for Early-Stage Non-Small Cell Lung Cancer (NSCLC) by State
    Sineshaw, Helmneh M.
    Wu, Xiao-Cheng
    Flanders, W. Dana
    Osarogiagbon, Raymond Uyiosa
    Jemal, Ahmedin
    [J]. JOURNAL OF THORACIC ONCOLOGY, 2016, 11 (06) : 880 - 889
  • [42] Predicting the Risk of Disease Recurrence and Death Following Curative-intent Radiotherapy for Non-small Cell Lung Cancer: The Development and Validation of Two Scoring Systems From a Large Multicentre UK Cohort
    Evison, M.
    Barrett, E.
    Cheng, A.
    Mulla, A.
    Walls, G.
    Johnston, D.
    McAleese, J.
    Moore, K.
    Hicks, J.
    Blyth, K.
    Denholm, M.
    Magee, L.
    Gilligan, D.
    Silverman, S.
    Hiley, C.
    Qureshi, M.
    Clinch, H.
    Hatton, M.
    Philipps, L.
    Brown, S.
    O'Brien, M.
    McDonald, F.
    Faivre-Finn, C.
    [J]. CLINICAL ONCOLOGY, 2021, 33 (03) : 145 - 154
  • [43] Prediction of recurrence risk in endometrial cancer with multimodal deep learning
    Volinsky-Fremond, Sarah
    Horeweg, Nanda
    Andani, Sonali
    Wolf, Jurriaan Barkey
    Lafarge, Maxime W.
    de Kroon, Cor D.
    Ortoft, Gitte
    Hogdall, Estrid
    Dijkstra, Jouke
    Jobsen, Jan J.
    Lutgens, Ludy C. H. W.
    Powell, Melanie E.
    Mileshkin, Linda R.
    Mackay, Helen
    Leary, Alexandra
    Katsaros, Dionyssios
    Nijman, Hans W.
    de Boer, Stephanie M.
    Nout, Remi A.
    de Bruyn, Marco
    Church, David
    Smit, Vincent T. H. B. M.
    Creutzberg, Carien L.
    Koelzer, Viktor H.
    Bosse, Tjalling
    [J]. NATURE MEDICINE, 2024,
  • [44] Early recurrence of well-differentiated (G1) neuroendocrine liver metastasis after curative-intent surgery: Risk factors and outcome
    Xiang, Jun-Xi
    Zhang, Xu-Feng
    Weiss, Matthew
    Aldrighetti, Luca
    Poultsides, George A.
    Bauer, Todd W.
    Fields, Ryan C.
    Maithel, Shishir Kumar
    Marques, Hugo P.
    Pawlik, Timothy M.
    [J]. JOURNAL OF SURGICAL ONCOLOGY, 2018, 118 (07) : 1096 - 1104
  • [45] Deep Learning for Automatic Identification of Nodule Morphology Features and Prediction of Lung Cancer
    Wang, Weilun
    Chakraborty, Goutam
    [J]. 2019 IEEE 10TH INTERNATIONAL CONFERENCE ON AWARENESS SCIENCE AND TECHNOLOGY (ICAST 2019), 2019, : 539 - 544
  • [46] Testing the feasibility of establishing a cohort of lung cancer patients to investigate recovery following surgery with curative intent
    Foster, C.
    Calman, L.
    Foster, R.
    Richardson, A.
    Smith, P.
    Baird, J.
    Beaver, K.
    Edwards, J. G.
    [J]. LUNG CANCER, 2014, 83 : S78 - S78
  • [47] Establishing a cohort of lung cancer patients to investigate recovery following surgery with curative intent - a feasibility study
    Foster, C.
    Calman, L.
    Foster, R.
    Richardson, A.
    Smith, P.
    Baird, J.
    Beaver, K.
    Edwards, J.
    [J]. PSYCHO-ONCOLOGY, 2014, 23 : 13 - 14
  • [48] A CT radiomics model to predict overall survival following curative-intent radiotherapy for stage I-III non-small cell lung cancer
    Hindocha, S.
    Charlton, T. G.
    Linton-Reid, K.
    Hunter, B.
    Chan, C.
    Ahmed, M.
    Robinson, E.
    Orton, M.
    Lunn, J.
    Ahmad, S.
    McDonald, F.
    Locke, I.
    Power, D.
    Doran, S.
    Blackledge, M.
    Lee, R. W.
    Aboagye, E.
    [J]. ANNALS OF ONCOLOGY, 2022, 33 : S107 - S107
  • [49] A Model-Based Cost-Effectiveness Analysis of an Exercise Program for Lung Cancer Survivors After Curative-Intent Treatment
    Ha, Duc
    Kerr, Jacqueline
    Ries, Andrew L.
    Fuster, Mark M.
    Lippman, Scott M.
    Murphy, James D.
    [J]. AMERICAN JOURNAL OF PHYSICAL MEDICINE & REHABILITATION, 2020, 99 (03) : 233 - 240
  • [50] Streamlining lung cancer management in Nova Scotia amid COVID-19: pooled triaging for expedited curative-intent oncologic surgery
    Patel, Pooja
    Brownstone, Rheann
    Cruickshank, Brianne
    Garagan, Connor
    Manos, Daria
    French, Daniel
    Wallace, Alison
    Plourde, Madelaine
    [J]. CANADIAN JOURNAL OF SURGERY, 2024, 67 (04) : E279 - E285