Capacitary maximal inequalities and applications

被引:2
|
作者
Chen, You -Wei Benson [1 ]
Ooi, Keng Hao [2 ]
Spector, Daniel [3 ]
机构
[1] Natl Chiao Tung Univ, Dept Appl Math, 1001 Ta Hsueh Rd, Hsinchu 30010, Taiwan
[2] Natl Cent Univ, Dept Math, 300 Jhongda Rd, Jhongli 32001, Taoyuan County, Taiwan
[3] Natl Taiwan Normal Univ, Dept Math, 88,Sect 4,Tingzhou Rd, Taipei City 116, Taiwan
关键词
Maximal function inequalities; Capacitary integration; Strong-type capacitary inequality; Capacitary maximal functions; CHOQUET INTEGRALS; HAUSDORFF; SPACES; DERIVATIVES;
D O I
10.1016/j.jfa.2024.110396
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we introduce capacitary analogues of the HardyLittlewood maximal function, M-C f (x) := sup(r> 0) 1/C(B (x, r)) integral(B (x,r)) |f| dC, for C = the Hausdorff content or a Riesz capacity. For these maximal functions, we prove a strong -type (p, p) bound for 1 < p <= +infinity on the capacitary integration spaces L-p(C) and a weak-type (1 , 1) bound on the capacitary integration space L-1(C). We show how these estimates clarify and improve the existing literature concerning maximal function estimates on capacitary integration spaces. As a consequence, we deduce correspondingly stronger differentiation theorems of Lebesgue-type, which in turn, by classical capacitary inequalities, yield more precise estimates concerning Lebesgue points for functions in Sobolev spaces. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:31
相关论文
共 50 条