On the Maximal Inequalities for Partial Sums of Strong Mixing Random Variables with Applications

被引:0
|
作者
Xing, Guo-dong [1 ]
Yang, Shan-chao [2 ]
机构
[1] Hunan Univ Sci & Engn, Dept Math, Yongzhou 425100, Hunan, Peoples R China
[2] Guangxi Normal Univ, Dept Math, Guilin, Guangxi, Peoples R China
来源
THAI JOURNAL OF MATHEMATICS | 2011年 / 9卷 / 01期
关键词
Convergence rate; Gasser-Muller estimator; Maximal inequality; Strong mixing;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Maximal inequalities for partial sums of strong mixing random variables are established. To show the applications of the inequalities obtained, we discuss the strong consistency of Gasser-Muller estimator of fixed design regression estimate and obtain the almost sure convergence rate n (1/2)(log log n) (1/xi) log(3/2) n with any 0 < xi < 2, which closes to the optimal achievable convergence rate for independent random variables under an iterated logarithm.
引用
收藏
页码:11 / 19
页数:9
相关论文
共 50 条