Precision medicine in colorectal cancer: Leveraging multi-omics, spatial omics, and artificial intelligence

被引:2
|
作者
Xu, Zishan [1 ]
Li, Wei [2 ]
Dong, Xiangyang [1 ]
Chen, Yingying [3 ]
Zhang, Dan [1 ]
Wang, Jingnan [4 ]
Zhou, Lin [5 ]
He, Guoyang [1 ]
机构
[1] Xinxiang Med Univ, Dept Pathol, Xinxiang 453000, Peoples R China
[2] Xinxiang Med Univ, Sch Forens Med, Xinxiang 453000, Peoples R China
[3] Xinxiang Med Univ, Sch Basic Med Sci, Xinxiang 453000, Peoples R China
[4] Xinxiang Med Univ, SanQuan Med Coll, Xinxiang 453003, Peoples R China
[5] Huazhong Univ Sci & Technol, Union Hosp, Tongji Med Coll, Dept Breast & Thyroid Surg, Wuhan 430022, Peoples R China
关键词
Colorectal cancer; Precision medicine; Multi-omics; Spatial omics; Artificial intelligence; Biomarkers; MICROSATELLITE INSTABILITY; COLON-CANCER; TUMOR; IDENTIFICATION; BIOMARKERS; PROTEOMICS; DISCOVERY;
D O I
10.1016/j.cca.2024.119686
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
Colorectal cancer (CRC) is a leading cause of cancer-related deaths. Recent advancements in genomic technologies and analytical approaches have revolutionized CRC research, enabling precision medicine. This review highlights the integration of multi-omics, spatial omics, and artificial intelligence (AI) in advancing precision medicine for CRC. Multi-omics approaches have uncovered molecular mechanisms driving CRC progression, while spatial omics have provided insights into the spatial heterogeneity of gene expression in CRC tissues. AI techniques have been utilized to analyze complex datasets, identify new treatment targets, and enhance diagnosis and prognosis. Despite the tumor's heterogeneity and genetic and epigenetic complexity, the fusion of multi-omics, spatial omics, and AI shows the potential to overcome these challenges and advance precision medicine in CRC. The future lies in integrating these technologies to provide deeper insights and enable personalized therapies for CRC patients.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Multi-omics approach to cholangiocarcinoma-related biology and development of precision medicine
    Kwon, Woo Young
    Kang, Incheon
    Lee, Sung Hwan
    CANCER RESEARCH, 2024, 84 (06)
  • [42] Practicing precision medicine with intelligently integrative clinical and multi-omics data analysis
    Zeeshan Ahmed
    Human Genomics, 14
  • [43] Multi-omics data integration and analysis pipeline for precision medicine: Systematic review
    Abdelaziz, Esraa Hamdi
    Ismail, Rasha
    Mabrouk, Mai S.
    Amin, Eman
    Computational Biology and Chemistry, 2024, 113
  • [44] An Integrated Multi-Omics and Artificial Intelligence Framework for Advance Plant Phenotyping in Horticulture
    Cembrowska-Lech, Danuta
    Krzeminska, Adrianna
    Miller, Tymoteusz
    Nowakowska, Anna
    Adamski, Cezary
    Radaczynska, Martyna
    Mikiciuk, Grzegorz
    Mikiciuk, Malgorzata
    BIOLOGY-BASEL, 2023, 12 (10):
  • [45] Missing data in multi-omics integration: Recent advances through artificial intelligence
    Flores, Javier E.
    Claborne, Daniel M.
    Weller, Zachary D.
    Webb-Robertson, Bobbie-Jo M.
    Waters, Katrina M.
    Bramer, Lisa M.
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2023, 6
  • [46] Multi-omics Pathways Workflow (MOPAW): An Automated Multi-omics Workflow on the Cancer Genomics Cloud
    Nguyen, Trinh
    Bian, Xiaopeng
    Roberson, David
    Khanna, Rakesh
    Chen, Qingrong
    Yan, Chunhua
    Beck, Rowan
    Worman, Zelia
    Meerzaman, Daoud
    CANCER INFORMATICS, 2023, 22
  • [47] Immunotherapy and Cancer: The Multi-Omics Perspective
    Donisi, Clelia
    Pretta, Andrea
    Pusceddu, Valeria
    Ziranu, Pina
    Lai, Eleonora
    Puzzoni, Marco
    Mariani, Stefano
    Massa, Elena
    Madeddu, Clelia
    Scartozzi, Mario
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (06)
  • [48] Multi-omics Pathways Workflow (MOPAW): An Automated Multi-omics Workflow on the Cancer Genomics Cloud
    Nguyen, Trinh
    Bian, Xiaopeng
    Roberson, David
    Khanna, Rakesh
    Chen, Qingrong
    Yan, Chunhua
    Beck, Rowan
    Worman, Zelia
    Meerzaman, Daoud
    CANCER INFORMATICS, 2023, 22
  • [49] Metabolomics and the Multi-Omics View of Cancer
    Wishart, David
    METABOLITES, 2022, 12 (02)
  • [50] A machine learning tool for spatial multi-omics
    Ang, Kok Siong
    Chen, Jinmiao
    NATURE METHODS, 2024, 21 (09) : 1593 - 1594