Multi-omics Pathways Workflow (MOPAW): An Automated Multi-omics Workflow on the Cancer Genomics Cloud

被引:0
|
作者
Nguyen, Trinh [1 ]
Bian, Xiaopeng [1 ]
Roberson, David [2 ]
Khanna, Rakesh [1 ]
Chen, Qingrong [1 ]
Yan, Chunhua [1 ]
Beck, Rowan [2 ]
Worman, Zelia [2 ]
Meerzaman, Daoud [1 ]
机构
[1] NCI, Computat Genom & Bioinformat Branch, Ctr Biomed Informat & Informat Technol, 9609 Med Ctr Dr Rockville,MD 20850, Rockville, MD 20892 USA
[2] Seven Bridges, Charlestown, MA USA
基金
美国国家卫生研究院;
关键词
Multi-omics; cloud; automatic workflow; CGC; pathway analysis; TCGA; GENE; SIGNATURES;
D O I
10.1177/11769351231180992
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Introduction:In the era of big data, gene-set pathway analyses derived from multi-omics are exceptionally powerful. When preparing and analyzing high-dimensional multi-omics data, the installation process and programing skills required to use existing tools can be challenging. This is especially the case for those who are not familiar with coding. In addition, implementation with high performance computing solutions is required to run these tools efficiently. Methods:We introduce an automatic multi-omics pathway workflow, a point and click graphical user interface to Multivariate Single Sample Gene Set Analysis (MOGSA), hosted on the Cancer Genomics Cloud by Seven Bridges Genomics. This workflow leverages the combination of different tools to perform data preparation for each given data types, dimensionality reduction, and MOGSA pathway analysis. The Omics data includes copy number alteration, transcriptomics data, proteomics and phosphoproteomics data. We have also provided an additional workflow to help with downloading data from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium and preprocessing these data to be used for this multi-omics pathway workflow. Results:The main outputs of this workflow are the distinct pathways for subgroups of interest provided by users, which are displayed in heatmaps if identified. In addition to this, graphs and tables are provided to users for reviewing. Conclusion:Multi-omics Pathway Workflow requires no coding experience. Users can bring their own data or download and preprocess public datasets from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium using our additional workflow based on the samples of interest. Distinct overactivated or deactivated pathways for groups of interest can be found. This useful information is important in effective therapeutic targeting.
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [1] Multi-omics Pathways Workflow (MOPAW): An Automated Multi-omics Workflow on the Cancer Genomics Cloud
    Nguyen, Trinh
    Bian, Xiaopeng
    Roberson, David
    Khanna, Rakesh
    Chen, Qingrong
    Yan, Chunhua
    Beck, Rowan
    Worman, Zelia
    Meerzaman, Daoud
    CANCER INFORMATICS, 2023, 22
  • [2] An automated workflow for multi-omics screening of microbial model organisms
    Donati, Stefano
    Mattanovich, Matthias
    Hjort, Pernille
    Jacobsen, Simo Abdessamad Baallal
    Blomquist, Sarah Dina
    Mangaard, Drude
    Gurdo, Nicolas
    Pastor, Felix Pacheco
    Maury, Jerome
    Hanke, Rene
    Herrgard, Markus J.
    Wulff, Tune
    Jakociunas, Tadas
    Nielsen, Lars Keld
    McCloskey, Douglas
    NPJ SYSTEMS BIOLOGY AND APPLICATIONS, 2023, 9 (01)
  • [3] An automated workflow for multi-omics screening of microbial model organisms
    Stefano Donati
    Matthias Mattanovich
    Pernille Hjort
    Simo Abdessamad Baallal Jacobsen
    Sarah Dina Blomquist
    Drude Mangaard
    Nicolas Gurdo
    Felix Pacheco Pastor
    Jérôme Maury
    Rene Hanke
    Markus J. Herrgård
    Tune Wulff
    Tadas Jakočiūnas
    Lars Keld Nielsen
    Douglas McCloskey
    npj Systems Biology and Applications, 9
  • [4] A practical data processing workflow for multi-OMICS projects
    Kohl, Michael
    Megger, Dominik A.
    Trippler, Martin
    Meckel, Hagen
    Ahrens, Maike
    Bracht, Thilo
    Weber, Frank
    Hoffmann, Andreas-Claudius
    Baba, Hideo A.
    Sitek, Barbara
    Schlaak, Joerg F.
    Meyer, Helmut E.
    Stephan, Christian
    Eisenacher, Martin
    BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2014, 1844 (01): : 52 - 62
  • [5] An Integrative Multi-Omics Workflow to Address Multifactorial Toxicology Experiments
    Gonzalez-Ruiz, Victor
    Schvartz, Domitille
    Sandstrom, Jenny
    Pezzatti, Julian
    Jeanneret, Fabienne
    Tonoli, David
    Boccard, Julien
    Monnet-Tschudi, Florianne
    Sanchez, Jean-Charles
    Rudaz, Serge
    METABOLITES, 2019, 9 (04):
  • [6] A multi-omics data analysis workflow packaged as a FAIR Digital Object
    Niehues, Anna
    de Visser, Casper
    Hagenbeek, Fiona A.
    Kulkarni, Purva
    Pool, Rene
    Karu, Naama
    Kindt, Alida S. D.
    Singh, Gurnoor
    Vermeiren, Robert R. J. M.
    Boomsma, Dorret, I
    van Dongen, Jenny
    't Hoen, Peter A. C.
    van Gool, Alain J.
    GIGASCIENCE, 2024, 13
  • [7] BioMOBS: A multi-omics visual analytics workflow for biomolecular insight generation
    Heylen, Dries
    Peeters, Jannes
    Aerts, Jan
    Ertaylan, Gokhan
    Hooyberghs, Jef
    PLOS ONE, 2023, 18 (12):
  • [8] Survey on Multi-omics, and Multi-omics Data Analysis, Integration and Application
    Shahrajabian, Mohamad Hesam
    Sun, Wenli
    CURRENT PHARMACEUTICAL ANALYSIS, 2023, 19 (04) : 267 - 281
  • [9] Identification of antiparasitic drug targets using a multi-omics workflow in the acanthocephalan model
    Schmidt, Hanno
    Mauer, Katharina
    Glaser, Manuel
    Dezfuli, Bahram Sayyaf
    Hellmann, Soren Lukas
    Silva Gomes, Ana Lucia
    Butter, Falk
    Wade, Rebecca C.
    Hankeln, Thomas
    Herlyn, Holger
    BMC GENOMICS, 2022, 23 (01)
  • [10] Identification of antiparasitic drug targets using a multi-omics workflow in the acanthocephalan model
    Hanno Schmidt
    Katharina Mauer
    Manuel Glaser
    Bahram Sayyaf Dezfuli
    Sören Lukas Hellmann
    Ana Lúcia Silva Gomes
    Falk Butter
    Rebecca C. Wade
    Thomas Hankeln
    Holger Herlyn
    BMC Genomics, 23