Supervised and Unsupervised Classification Based on Remote Sensing for Study of an Area

被引:0
|
作者
Popescu, Cosmin Alin [1 ]
Horablaga, Adina [1 ]
Herbei, Mihai Valentin [1 ]
Bertici, Radu [1 ]
Dicu, Daniel [1 ]
Sala, Florin [1 ]
机构
[1] Banat Univ Agr Sci & Vet Med King Michael I Roman, Timisoara, Romania
关键词
Euclidean distances; probability; remote sensing; supervised and unsupervised classification;
D O I
10.1063/5.0210376
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Supervised and unsupervised classification, based on remote sensing, was used to study a territorial perimeter. NDWI, NDVI and NDBI indices were calculated based on satellite imagery. The NDVI variation relative to NDWI was described by a polynomial equation of degree 2, in statistical safety conditions (R-2 = 0.910, p <0.001). Unsupervised classification (U-class), based on the Iso Cluster algorithm (iterative process, which assigns each cell to a cluster based on Euclidean distances) and supervised classification (S-class), based on the Maximum likelihood algorithm (allocate each pixel to a class based on of maximum probability), led to the detection of three categories in the studied territory, with close values; water, vegetation, constructions (p <0.001 (95%). Remote sensing provides useful spectral information for the analysis of an area, and the operator can decide on one method or another of classification in relation to the additional information held in the territory under consideration.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Supervised Classification of Multisensor and Multiresolution Remote Sensing Images With a Hierarchical Copula-Based Approach
    Voisin, Aurelie
    Krylov, Vladimir A.
    Moser, Gabriele
    Serpico, Sebastiano B.
    Zerubia, Josiane
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (06): : 3346 - 3358
  • [42] Multiple classifier systems for supervised remote sensing image classification based on dynamic classifier selection
    Smits, PC
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (04): : 801 - 813
  • [43] Supervised classification of multispectral remote sensing images based on the nearest reduced convex hull approach
    Qing, Jianjun
    Huo, Hong
    Fang, Tao
    JOURNAL OF APPLIED REMOTE SENSING, 2009, 3
  • [44] Semi-supervised Remote Sensing Image Scene Classification Based on Generative Adversarial Networks
    Guo, Dongen
    Wu, Zechen
    Zhang, Yuanzheng
    Shen, Zhen
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2022, 15 (01)
  • [45] Semi-supervised Remote Sensing Image Scene Classification Based on Generative Adversarial Networks
    Dongen Guo
    Zechen Wu
    Yuanzheng Zhang
    Zhen Shen
    International Journal of Computational Intelligence Systems, 15
  • [46] Based on IDRISI Remote Sensing Images Land-use Types of Supervised Classification Techniques
    Zhang Kun
    Wang Hai-feng
    Li Zhuang
    AUTOMATIC CONTROL AND MECHATRONIC ENGINEERING II, 2013, 415 : 305 - 308
  • [47] Semi-supervised remote sensing image scene classification with prototype-based consistency
    Yang LI
    Zhang LI
    Zi WANG
    Kun WANG
    Qifeng YU
    Chinese Journal of Aeronautics, 2024, (02) : 459 - 470
  • [48] SEMI-SUPERVISED SCENE CLASSIFICATION FOR REMOTE SENSING IMAGES BASED ON CNN AND ENSEMBLE LEARNING
    Dai, Xueyuan
    Wu, Xiaofeng
    Wang, Bin
    Zhang, Liming
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4732 - 4735
  • [49] Semi-supervised remote sensing image scene classification with prototype-based consistency
    Li, Yang
    Li, Zhang
    Wang, Zi
    Wang, Kun
    Yu, Qifeng
    CHINESE JOURNAL OF AERONAUTICS, 2024, 37 (02) : 459 - 470
  • [50] Semi-supervised classification method for remote sensing images based on support vector machine
    Qi, H
    Yang, JG
    Ding, LX
    2004 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOLS 1-7, 2004, : 2357 - 2361