Fully Dynamic Matching: Beating 2-Approximation in Δε Update Time

被引:0
|
作者
Behnezhad, Soheil [1 ]
Lacki, Jakub [2 ]
Mirrokni, Vahab [2 ]
机构
[1] Univ Maryland, College Pk, MD 20742 USA
[2] Google Res, Mountain View, CA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In fully dynamic graphs, we know how to maintain a 2-approximation of maximum matching extremely fast, that is, in polylogarithmic update time or better. In a sharp contrast and despite extensive studies, all known algorithms that maintain a 2 - Omega(1) approximate matching are much slower. Understanding this gap and, in particular, determining the best possible update time for algorithms providing a better-than-2 approximate matching is a major open question. In this paper, we show that for any constant epsilon > 0, there is a randomized algorithm that with high probability maintains a 2 - Omega(1) approximate maximum matching of a fully-dynamic general graph in worst-case update time O(Delta(epsilon) + polylog n), where Delta is the maximum degree. Previously, the fastest fully dynamic matching algorithm providing a better-than-2 approximation had O(m(1/4)) update-time [Bernstein and Stein, SODA 2016]. A faster algorithm with update-time O(n(epsilon)) was known, but worked only for maintaining the size (and not the edges) of the matching in bipartite graphs [Bhattacharya, Henzinger, and Nanongkai, STOC 2016].
引用
收藏
页码:2492 / 2508
页数:17
相关论文
共 50 条
  • [41] A 2-approximation for the maximum satisfying bisection problem
    Ries, Bernard
    Zenklusen, Rico
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2011, 210 (02) : 169 - 175
  • [42] Beating Greedy Matching in Sublinear Time
    Behnezhad, Soheil
    Roghani, Mohammad
    Rubinstein, Aviad
    Saberi, Amin
    PROCEEDINGS OF THE 2023 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2023, : 3900 - 3945
  • [43] Deterministic Dynamic Matching in Worst-Case Update Time
    Kiss, Peter
    ALGORITHMICA, 2023, 85 (12) : 3741 - 3765
  • [44] Deterministic Dynamic Matching in Worst-Case Update Time
    Peter Kiss
    Algorithmica, 2023, 85 : 3741 - 3765
  • [45] A linear-time 2-approximation algorithm for the watchman route problem for simple polygons
    Tan, Xuehou
    THEORETICAL COMPUTER SCIENCE, 2007, 384 (01) : 92 - 103
  • [46] A 2-approximation polynomial algorithm for a clustering problem
    Kel'manov A.V.
    Khandeev V.I.
    Kel'manov, A. V. (kelm@math.nsc.ru), 1600, Izdatel'stvo Nauka (07): : 515 - 521
  • [47] On 2-approximation to the vertex-connectivity in graphs
    Naganiochi, H
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2005, E88D (01): : 12 - 16
  • [48] A 2-approximation algorithm for the zookeeper's problem
    Tan, Xuehou
    INFORMATION PROCESSING LETTERS, 2006, 100 (05) : 183 - 187
  • [49] A 2-Approximation for the Minimum Duplication Speciation Problem
    Ouangraoua, Aida
    Swenson, Krister M.
    Chauve, Cedric
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2011, 18 (09) : 1041 - 1053
  • [50] A 21/2-approximation algorithm for shortest superstring
    Sweedyk, Z
    SIAM JOURNAL ON COMPUTING, 2000, 29 (03) : 954 - 986