Fully Dynamic Matching: Beating 2-Approximation in Δε Update Time

被引:0
|
作者
Behnezhad, Soheil [1 ]
Lacki, Jakub [2 ]
Mirrokni, Vahab [2 ]
机构
[1] Univ Maryland, College Pk, MD 20742 USA
[2] Google Res, Mountain View, CA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In fully dynamic graphs, we know how to maintain a 2-approximation of maximum matching extremely fast, that is, in polylogarithmic update time or better. In a sharp contrast and despite extensive studies, all known algorithms that maintain a 2 - Omega(1) approximate matching are much slower. Understanding this gap and, in particular, determining the best possible update time for algorithms providing a better-than-2 approximate matching is a major open question. In this paper, we show that for any constant epsilon > 0, there is a randomized algorithm that with high probability maintains a 2 - Omega(1) approximate maximum matching of a fully-dynamic general graph in worst-case update time O(Delta(epsilon) + polylog n), where Delta is the maximum degree. Previously, the fastest fully dynamic matching algorithm providing a better-than-2 approximation had O(m(1/4)) update-time [Bernstein and Stein, SODA 2016]. A faster algorithm with update-time O(n(epsilon)) was known, but worked only for maintaining the size (and not the edges) of the matching in bipartite graphs [Bhattacharya, Henzinger, and Nanongkai, STOC 2016].
引用
收藏
页码:2492 / 2508
页数:17
相关论文
共 50 条
  • [11] FULLY DYNAMIC MAXIMAL MATCHING IN O(log n) UPDATE TIME
    Baswana, Surender
    Gupta, Manoj
    Sen, Sandeep
    SIAM JOURNAL ON COMPUTING, 2015, 44 (01) : 88 - 113
  • [12] An Exponential Time 2-Approximation Algorithm for Bandwidth
    Fuerer, Martin
    Gaspers, Serge
    Kasiviswanathan, Shiva Prasad
    PARAMETERIZED AND EXACT COMPUTATION, 2009, 5917 : 173 - +
  • [13] An exponential time 2-approximation algorithm for bandwidth
    Fuerer, Martin
    Gaspers, Serge
    Kasiviswanathan, Shiva Prasad
    THEORETICAL COMPUTER SCIENCE, 2013, 511 : 23 - 31
  • [14] Distributed 2-Approximation Algorithm for the Semi-matching Problem
    Czygrinow, Andrzej
    Hanckowiak, Michal
    Szymanska, Edyta
    Wawrzyniak, Wojciech
    DISTRIBUTED COMPUTING, DISC 2012, 2012, 7611 : 210 - 222
  • [15] New Deterministic Approximation Algorithms for Fully Dynamic Matching
    Bhattacharya, Sayan
    Henzinger, Monika
    Nanongkai, Danupon
    STOC'16: PROCEEDINGS OF THE 48TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2016, : 398 - 411
  • [16] Fully-dynamic Weighted Matching Approximation in Practice
    Angriman, Eugenio
    Meyerhenke, Henning
    Schulz, Christian
    Ucar, Bora
    PROCEEDINGS OF THE 2021 SIAM CONFERENCE ON APPLIED AND COMPUTATIONAL DISCRETE ALGORITHMS, ACDA21, 2021, : 32 - 44
  • [17] FULLY DYNAMIC MAXIMAL MATCHING IN O(log N) UPDATE TIME (CORRECTED VERSION)
    Baswana, Surender
    Gupta, Manoj
    Sen, Sandeep
    SIAM JOURNAL ON COMPUTING, 2018, 47 (03) : 617 - 650
  • [18] A quadratic time 2-approximation algorithm for block sorting
    Bein, Wolfgang W.
    Larmore, Lawrence L.
    Morales, Linda
    Sudborough, I. Hal
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (8-10) : 711 - 717
  • [19] A Single-Exponential Time 2-Approximation Algorithm for Treewidth
    Korhonen, Tuukka
    2021 IEEE 62ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2021), 2022, : 184 - 192
  • [20] A 2-approximation for the bounded treewidth sparsest cutproblem in FPT Time
    Cohen-Addad, Vincent
    Moemke, Tobias
    Verdugo, Victor
    MATHEMATICAL PROGRAMMING, 2024, 206 (1-2) : 479 - 495