CL3D: Unsupervised Domain Adaptation for Cross-LiDAR 3D Detection

被引:0
|
作者
Peng, Xidong [1 ]
Zhu, Xinge [3 ]
Ma, Yuexin [1 ,2 ]
机构
[1] ShanghaiTech Univ, Shanghai, Peoples R China
[2] Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai, Peoples R China
[3] Chinese Univ Hong Kong, Hong Kong, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Domain adaptation for Cross-LiDAR 3D detection is challenging due to the large gap on the raw data representation with disparate point densities and point arrangements. By exploring domain-invariant 3D geometric characteristics and motion patterns, we present an unsupervised domain adaptation method that overcomes above difficulties. First, we propose the Spatial Geometry Alignment module to extract similar 3D shape geometric features of the same object class to align two domains, while eliminating the effect of distinct point distributions. Second, we present Temporal Motion Alignment module to utilize motion features in sequential frames of data to match two domains. Prototypes generated from two modules are incorporated into the pseudolabel reweighting procedure and contribute to our effective self-training framework for the target domain. Extensive experiments show that our method achieves state-of-the-art performance on cross-device datasets, especially for the datasets with large gaps captured by mechanical scanning LiDARs and solid-state LiDARs in various scenes. Project homepage is at https://github.com/4DVLab/CL3D.git.
引用
下载
收藏
页码:2047 / 2055
页数:9
相关论文
共 50 条
  • [21] Unsupervised Domain Adaptation for Monocular 3D Object Detection via Self-training
    Li, Zhenyu
    Chen, Zehui
    Li, Ang
    Fang, Liangji
    Jiang, Qinhong
    Liu, Xianming
    Jiang, Junjun
    COMPUTER VISION, ECCV 2022, PT IX, 2022, 13669 : 245 - 262
  • [22] MA-ST3D: Motion Associated Self-Training for Unsupervised Domain Adaptation on 3D Object Detection
    Zhang, Chi
    Chen, Wenbo
    Wang, Wei
    Zhang, Zhaoxiang
    IEEE Transactions on Image Processing, 2024, 33 : 6227 - 6240
  • [23] Unsupervised Domain Adaptation for Vertebrae Detection and Identification in 3D CT Volumes Using a Domain Sanity Loss
    Sager, Pascal
    Salzmann, Sebastian
    Burn, Felice
    Stadelmann, Thilo
    JOURNAL OF IMAGING, 2022, 8 (08)
  • [24] A Novel 3D Unsupervised Domain Adaptation Framework for Cross-Modality Medical Image Segmentation
    Yao, Kai
    Su, Zixian
    Huang, Kaizhu
    Yang, Xi
    Sun, Jie
    Hussain, Amir
    Coenen, Frans
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (10) : 4976 - 4986
  • [25] Universal unsupervised cross-domain 3D shape retrieval
    Heyu Zhou
    Fan Wang
    Qipei Liu
    Jiayu Li
    Wen Liu
    Xuanya Li
    An-An Liu
    Multimedia Systems, 2024, 30
  • [26] Universal unsupervised cross-domain 3D shape retrieval
    Zhou, Heyu
    Wang, Fan
    Liu, Qipei
    Li, Jiayu
    Liu, Wen
    Li, Xuanya
    Liu, An-An
    MULTIMEDIA SYSTEMS, 2024, 30 (01)
  • [27] Joint deep feature learning and unsupervised visual domain adaptation for cross-domain 3D object retrieval
    Li, Wen-Hui
    Xiang, Shu
    Nie, Wei-Zhi
    Song, Dan
    Liu, An-An
    Li, Xuan-Ya
    Hao, Tong
    INFORMATION PROCESSING & MANAGEMENT, 2020, 57 (05)
  • [28] Unsupervised Domain Adaptation for 3D Keypoint Estimation via View Consistency
    Zhou, Xingyi
    Karpur, Arjun
    Gan, Chuang
    Luo, Linjie
    Huang, Qixing
    COMPUTER VISION - ECCV 2018, PT XII, 2018, 11216 : 141 - 157
  • [29] Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object Detection in Self-Driving Cars
    You, Yurong
    Diaz-Ruiz, Carlos Andres
    Wang, Yan
    Chao, Wei-Lun
    Hariharan, Bharath
    Campbell, Mark
    Weinbergert, Kilian Q.
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022, : 5070 - 5077
  • [30] CoSMix: Compositional Semantic Mix for Domain Adaptation in 3D LiDAR Segmentation
    Saltori, Cristiano
    Galasso, Fabio
    Fiameni, Giuseppe
    Sebe, Nicu
    Ricci, Elisa
    Poiesi, Fabio
    COMPUTER VISION - ECCV 2022, PT XXXIII, 2022, 13693 : 586 - 602