Universal unsupervised cross-domain 3D shape retrieval

被引:0
|
作者
Heyu Zhou
Fan Wang
Qipei Liu
Jiayu Li
Wen Liu
Xuanya Li
An-An Liu
机构
[1] Yichang Testing Technique R &D Institute,Institute of Artificial Intelligence
[2] Hefei Comprehensive National Science Center,School of Electrical and Information Engineering
[3] Tianjin University,School of Navigation
[4] Baidu Inc.,undefined
[5] Tianjin Shengtong Technology Development Co.,undefined
[6] Ltd,undefined
[7] Wuhan University of Technology,undefined
来源
Multimedia Systems | 2024年 / 30卷
关键词
3D shape retrieval; Cross-domain retrieval; Multi-view representation learning; Multi-source domain adaptation;
D O I
暂无
中图分类号
学科分类号
摘要
Most existing cross-domain 3D shape retrieval (CD3DSR) methods have assumed the setting of a fixed kind of query set (source domain), and all the annotated query data follow the same distribution. However, in practical scenarios, the labelled query sets are typically collected from multiple sources. In such scenarios, single-source CD3DSR methods may fail because of the domain shift across different sources, and universal CD3DSR methods are needed. In this paper, we propose a novel universal unsupervised domain adaptation network (U2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^2$$\end{document}DAN). It mainly consists of two modules: cross-domain statistics alignment (CDSA) and source-domain feature adaptation (SDFA). First, we use 2D CNN to encode the query and 3D shape from the gallery (target domain) to obtain visual features. To mix up the features between each source and target domain pair, we introduce the margin disparity discrepancy (MDD) model to enforce the domain alignment in an adversarial way. Since the domain shifts also exist across different sources, which may result in performance degradation, we introduce two kinds of discriminators, source-domain discriminator, and cycle cross-domain discriminator to reduce source domain bias. Further, considering there are no available 3D datasets for evaluation, we constructed two novel datasets, MS3DOR-1 for universal cross-dataset 3D shape retrieval (3D-to-3D) and MS3DOR-2 for universal cross-modal 3D shape retrieval (2D-to-3D). Extensive comparisons on two datasets can verify the effectiveness of U2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{2}$$\end{document}DAN against the state-of-art methods.
引用
收藏
相关论文
共 50 条
  • [1] Universal unsupervised cross-domain 3D shape retrieval
    Zhou, Heyu
    Wang, Fan
    Liu, Qipei
    Li, Jiayu
    Liu, Wen
    Li, Xuanya
    Liu, An-An
    [J]. MULTIMEDIA SYSTEMS, 2024, 30 (01)
  • [2] Universal Cross-Domain 3D Model Retrieval
    Song, Dan
    Li, Tian-Bao
    Li, Wen-Hui
    Nie, Wei-Zhi
    Liu, Wu
    Liu, An-An
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 2721 - 2731
  • [3] 3D shape knowledge graph for cross-domain 3D shape retrieval
    Chang, Rihao
    Ma, Yongtao
    Hao, Tong
    Wang, Weijie
    Nie, Weizhi
    [J]. CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2024,
  • [4] Dual-Stage Uncertainty Modeling for Unsupervised Cross-Domain 3D Model Retrieval
    Li, Wenhui
    Zhou, Houran
    Zhang, Chenyu
    Nie, Weizhi
    Li, Xuanya
    Liu, An-An
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 8996 - 9007
  • [5] Joint deep feature learning and unsupervised visual domain adaptation for cross-domain 3D object retrieval
    Li, Wen-Hui
    Xiang, Shu
    Nie, Wei-Zhi
    Song, Dan
    Liu, An-An
    Li, Xuan-Ya
    Hao, Tong
    [J]. INFORMATION PROCESSING & MANAGEMENT, 2020, 57 (05)
  • [6] Learning Cross-Domain Neural Networks for Sketch-Based 3D Shape Retrieval
    Zhu, Fan
    Xie, Jin
    Fang, Yi
    [J]. THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 3683 - 3689
  • [7] Cross-Domain Image-Based 3D Shape Retrieval by View Sequence Learning
    Lee, Tang
    Lin, Yen-Liang
    Chiang, HungYueh
    Chiu, Ming-Wei
    Hsu, Winston H.
    Huang, Polly
    [J]. 2018 INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2018, : 258 - 266
  • [8] Cross-Domain 3D Model Retrieval via Visual Domain Adaptation
    Liu, Anan
    Xiang, Shu
    Li, Wenhui
    Nie, Weizhi
    Su, Yuting
    [J]. PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 828 - 834
  • [9] Manifold Adversarial Learning for Cross-domain 3D Shape Representation
    Huang, Hao
    Chen, Cheng
    Fang, Yi
    [J]. COMPUTER VISION, ECCV 2022, PT XXVI, 2022, 13686 : 272 - 289
  • [10] CLN: Cross-Domain Learning Network for 2D Image-Based 3D Shape Retrieval
    Nie, Weizhi
    Zhao, Yue
    Nie, Jie
    Liu, An-An
    Zhao, Sicheng
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (03) : 992 - 1005