Universal unsupervised cross-domain 3D shape retrieval

被引:0
|
作者
Heyu Zhou
Fan Wang
Qipei Liu
Jiayu Li
Wen Liu
Xuanya Li
An-An Liu
机构
[1] Yichang Testing Technique R &D Institute,Institute of Artificial Intelligence
[2] Hefei Comprehensive National Science Center,School of Electrical and Information Engineering
[3] Tianjin University,School of Navigation
[4] Baidu Inc.,undefined
[5] Tianjin Shengtong Technology Development Co.,undefined
[6] Ltd,undefined
[7] Wuhan University of Technology,undefined
来源
Multimedia Systems | 2024年 / 30卷
关键词
3D shape retrieval; Cross-domain retrieval; Multi-view representation learning; Multi-source domain adaptation;
D O I
暂无
中图分类号
学科分类号
摘要
Most existing cross-domain 3D shape retrieval (CD3DSR) methods have assumed the setting of a fixed kind of query set (source domain), and all the annotated query data follow the same distribution. However, in practical scenarios, the labelled query sets are typically collected from multiple sources. In such scenarios, single-source CD3DSR methods may fail because of the domain shift across different sources, and universal CD3DSR methods are needed. In this paper, we propose a novel universal unsupervised domain adaptation network (U2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^2$$\end{document}DAN). It mainly consists of two modules: cross-domain statistics alignment (CDSA) and source-domain feature adaptation (SDFA). First, we use 2D CNN to encode the query and 3D shape from the gallery (target domain) to obtain visual features. To mix up the features between each source and target domain pair, we introduce the margin disparity discrepancy (MDD) model to enforce the domain alignment in an adversarial way. Since the domain shifts also exist across different sources, which may result in performance degradation, we introduce two kinds of discriminators, source-domain discriminator, and cycle cross-domain discriminator to reduce source domain bias. Further, considering there are no available 3D datasets for evaluation, we constructed two novel datasets, MS3DOR-1 for universal cross-dataset 3D shape retrieval (3D-to-3D) and MS3DOR-2 for universal cross-modal 3D shape retrieval (2D-to-3D). Extensive comparisons on two datasets can verify the effectiveness of U2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{2}$$\end{document}DAN against the state-of-art methods.
引用
收藏
相关论文
共 50 条
  • [31] Novel Sketch-Based 3D Model Retrieval via Cross-domain Feature Clustering and Matching
    Gao, Kai
    Zhang, Jian
    Li, Chen
    Wang, Changbo
    He, Gaoqi
    Qin, Hong
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT I, 2020, 12396 : 299 - 311
  • [32] Multi-graph Convolutional Network for Unsupervised 3D Shape Retrieval
    Nie, Weizhi
    Zhao, Yue
    Liu, An-An
    Gao, Zan
    Su, Yuting
    [J]. MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 3395 - 3403
  • [33] Cross-Domain Error Minimization for Unsupervised Domain Adaptation
    Du, Yuntao
    Chen, Yinghao
    Cui, Fengli
    Zhang, Xiaowen
    Wang, Chongjun
    [J]. DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2021), PT II, 2021, 12682 : 429 - 448
  • [34] Cross-domain feature enhancement for unsupervised domain adaptation
    Long Sifan
    Wang Shengsheng
    Zhao Xin
    Fu Zihao
    Wang Bilin
    [J]. Applied Intelligence, 2022, 52 : 17326 - 17340
  • [35] Unsupervised Domain Adaptation with Imbalanced Cross-Domain Data
    Hsu, Tzu-Ming Harry
    Chen, Wei-Yu
    Hou, Cheng-An
    Tsai, Yao-Hung Hubert
    Yeh, Yi-Ren
    Wang, Yu-Chiang Frank
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 4121 - 4129
  • [36] Cross-Domain Contrastive Learning for Unsupervised Domain Adaptation
    Wang, Rui
    Wu, Zuxuan
    Weng, Zejia
    Chen, Jingjing
    Qi, Guo-Jun
    Jiang, Yu-Gang
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 1665 - 1673
  • [37] Web 3D: a CityGML viewer for cross-domain problem resolution
    Alvarez, Marina
    Raposo, Javier Fco.
    Miranda, Monica
    Bello, Ana
    Barbero, Miguel
    [J]. APPLIED GEOMATICS, 2021, 13 (01) : 71 - 87
  • [38] Cross-domain feature enhancement for unsupervised domain adaptation
    Sifan, Long
    Shengsheng, Wang
    Xin, Zhao
    Zihao, Fu
    Bilin, Wang
    [J]. APPLIED INTELLIGENCE, 2022, 52 (15) : 17326 - 17340
  • [39] Unsupervised Cross-Domain Image Retrieval with Semantic-Attended Mixture-of-Experts
    Wang, Kai
    Liu, Jiayang
    Xu, Xing
    Song, Jingkuan
    Liu, Xin
    Shen, Heng Tao
    [J]. PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2024, 2024, : 197 - 207
  • [40] Cross-Domain 3D Hand Pose Estimation with Dual Modalities
    Lin, Qiuxia
    Yang, Linlin
    Yao, Angela
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 17184 - 17193