Initial Application of Machine Learning for Beam Parameter Optimization at the Hefei Light Source II

被引:0
|
作者
Yu, Yongbo [1 ]
Ni, Wangbiao [1 ]
Liu, Gongfa [1 ]
Xu, Wei [1 ]
Li, Chuan [1 ]
Li, Weiming [1 ]
Xuan, Ke [1 ]
机构
[1] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Anhui, Peoples R China
来源
IPAC23 PROCEEDINGS | 2024年 / 2687卷
关键词
D O I
10.1088/1742-6596/2687/7/072002
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
Machine learning (ML) has become a valuable tool in particle accelerator control, with growing potential for beam parameter correction. In this study, we present preliminary ML applications at HLS-II, using Lasso regression for online tune correction and a neural network (NN) for beta function simulation correction. Both models were trained with supervised learning on measured beam parameter data, while an improved genetic algorithm optimized the NN structure. Our results show that the ML-based approach achieves competitive correction quality with fewer steps, making it a promising method for future particle accelerator applications and other fields.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Development and application of the new BPM system data processing program at Hefei light source
    MA Tianji YANG Yongliang SUN Baogen * ZOU Junying LU Ping ZHOU Zeran XU Hongliang NSRL
    [J]. Nuclear Science and Techniques, 2012, 23 (05) : 261 - 266
  • [22] Development and application of the new BPM system data processing program at Hefei light source
    Ma Tianji
    Yang Yongliang
    Sun Baogen
    Zou Junying
    Lu Ping
    Zhou Zeran
    Xu Hongliang
    [J]. NUCLEAR SCIENCE AND TECHNIQUES, 2012, 23 (05) : 261 - 266
  • [23] Application of machine learning for production optimization
    Kloeter, Bernhard
    [J]. 2018 IEEE 7TH WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION (WCPEC) (A JOINT CONFERENCE OF 45TH IEEE PVSC, 28TH PVSEC & 34TH EU PVSEC), 2018, : 3489 - 3491
  • [24] Beam closed orbit correction and feedback by constrained linear least squares method in Hefei light source
    Xuan K.
    Wang L.
    Li C.
    Li W.
    Wang J.
    Bao X.
    Xu H.
    Liu G.
    Liu Z.
    [J]. Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2010, 22 (01): : 155 - 158
  • [25] Supervised parameter optimization of a modular machine learning system
    Link, M
    Ishitobi, M
    [J]. MULTIPLE APPROACHES TO INTELLIGENT SYSTEMS, PROCEEDINGS, 1999, 1611 : 632 - 641
  • [26] Research on the Application of the Machine Learning Algorithm Based on Parameter Optimization in Network Security Situation Prediction
    Wang, Xiaoyan
    Wang, Jiangli
    [J]. International Journal of Network Security, 2023, 25 (02): : 245 - 251
  • [27] Gas Source Parameter Estimation Using Machine Learning in WSNs
    Mahfouz, Sandy
    Mourad-Chehade, Farah
    Honeine, Paul
    Farah, Joumana
    Snoussi, Hichem
    [J]. IEEE SENSORS JOURNAL, 2016, 16 (14) : 5795 - 5804
  • [28] A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors
    Zhang, Jilin
    Tu, Hangdi
    Ren, Yongjian
    Wan, Jian
    Zhou, Li
    Li, Mingwei
    Wang, Jue
    Yu, Lifeng
    Zhao, Chang
    Zhang, Lei
    [J]. SENSORS, 2017, 17 (10)
  • [29] Parameter Optimization of Wireless Power Transfer Based on Machine Learning
    Zhang, Heng
    Liao, Manwen
    He, Liangxi
    Lee, Chi-Kwan
    Li, Yong
    Li, Yanling
    Tan, Linlin
    Zhao, Xing
    [J]. ELECTRONICS, 2024, 13 (01)
  • [30] Application of a Stochastic Schemata Exploiter for Multi-Objective Hyper-parameter Optimization of Machine Learning
    Makino, Hiroya
    Kita, Eisuke
    [J]. REVIEW OF SOCIONETWORK STRATEGIES, 2023, 17 (02): : 179 - 213