Extreme low air temperature and reduced moisture jointly inhibit respiration in alpine grassland on the Qinghai-Tibetan Plateau

被引:2
|
作者
Wang, Tonghong [1 ,2 ]
Wang, Xufeng [2 ,3 ]
Zhang, Songlin [1 ]
Song, Xiaoyu [2 ]
Zhang, Yang [2 ]
Tan, Junlei [2 ]
Ren, Zhiguo [2 ]
Xu, Ziwei [4 ]
Che, Tao [2 ]
Yang, Yanpeng [2 ]
Nawaz, Zain [5 ]
机构
[1] Northwest Normal Univ, Sch Geog & Environm Sci, Lanzhou 730000, Peoples R China
[2] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Key Lab Remote Sensing Gansu Prov, Heihe Remote Sensing Expt Res Stn, Lanzhou 730000, Peoples R China
[3] Qinghai Normal Univ, Acad Plateau Sci & Sustainabil, Xining 810016, Peoples R China
[4] Beijing Normal Univ, Sch Geog, State Key Lab Remote Sensing Sci, Beijing, Peoples R China
[5] Govt Coll Univ, Dept Geog, Faisalabad, Pakistan
基金
中国国家自然科学基金;
关键词
Alpine grassland; Carbon fluxes; Climate change; Extreme weather events; Eddy covariance; SOIL RESPIRATION; FOREST ECOSYSTEMS; CLIMATE EXTREMES; CARBON-DIOXIDE; MEADOW; DEPENDENCE; EXCHANGE; NITROGEN; BUDGETS; FLUXES;
D O I
10.1016/j.scitotenv.2024.172039
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Alpine grassland is the main vegetation on the Qinghai-Tibetan Plateau (QTP) and exhibits high sensitivity to extreme weather events. With global warming, extreme weather events are projected to become more frequent on the QTP. However, the impact of these extreme weather events on the carbon cycle of alpine grassland remains unclear. The long-term in - situ carbon fluxes data was collected from 2013 to 2022 at an alpine grassland site to examine the impact of extreme low air temperature (ELT) and reduced moisture (including air and soil) on carbon fluxes during the growing season. Our findings indicated that a significant increase in net ecosystem production (NEP) after 2019, with the average NEP increasing from 278.91 +/- 43.27 g C m - 2 year - 1 during 2013 -2018 to 415.45 +/- 45.29 g C m - 2 year - 1 during 2019 -2022. The ecosystem carbon use efficiency (CUE)
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Effect of Degradation Intensity on Grassland Ecosystem Services in the Alpine Region of Qinghai-Tibetan Plateau, China
    Wen, Lu
    Dong, Shikui
    Li, Yuanyuan
    Li, Xiaoyan
    Shi, Jianjun
    Wang, Yanlong
    Liu, Demei
    Ma, Yushou
    PLOS ONE, 2013, 8 (03):
  • [42] Effects of permafrost degradation on alpine grassland in a semi-arid basin on the Qinghai-Tibetan Plateau
    Yi, Shuhua
    Zhou, Zhaoye
    Ren, Shilong
    Xu, Ming
    Qin, Yu
    Chen, Shengyun
    Ye, Baisheng
    ENVIRONMENTAL RESEARCH LETTERS, 2011, 6 (04):
  • [43] Grazing exclusion decreases soil organic C storage at an alpine grassland of the Qinghai-Tibetan Plateau
    Shi, Xiao-Ming
    Li, Xiao Gang
    Li, Chun Tao
    Zhao, Yu
    Shang, Zhan Huan
    Ma, Qifu
    ECOLOGICAL ENGINEERING, 2013, 57 : 183 - 187
  • [44] Plateau pikas burrowing activity accelerates ecosystem carbon emission from alpine grassland on the Qinghai-Tibetan Plateau
    Qin, Yu
    Chen, Jianjun
    Yi, Shuhua
    ECOLOGICAL ENGINEERING, 2015, 84 : 287 - 291
  • [45] Effect of grassland degradation on aggregate-associated soil organic carbon of alpine grassland ecosystems in the Qinghai-Tibetan Plateau
    Dong, Shikui
    Zhang, Jing
    Li, Yuanyuan
    Liu, Shiliang
    Dong, Qugnaming
    Zhou, Huakun
    Yeomans, Jane
    Li, Yv
    Li, Shuai
    Gao, Xiaoxia
    EUROPEAN JOURNAL OF SOIL SCIENCE, 2020, 71 (01) : 69 - 79
  • [46] The role of permafrost and soil water in distribution of alpine grassland and its NDVI dynamics on the Qinghai-Tibetan Plateau
    Wang, Xiaoyun
    Yi, Shuhua
    Wu, Qingbai
    Yang, Kun
    Ding, Yongjian
    GLOBAL AND PLANETARY CHANGE, 2016, 147 : 40 - 53
  • [47] Effects of Strong Earthquake on Plant Species Composition, Diversity, and Productivity of Alpine Grassland on Qinghai-Tibetan Plateau
    Zuo, Hui
    Shen, Hao
    Dong, Shikui
    Wu, Shengnan
    He, Fengcai
    Zhang, Ran
    Wang, Ziying
    Shi, Hang
    Hao, Xinghai
    Tan, Youquan
    Ma, Chunhui
    Li, Shengmei
    Liu, Yongqi
    Zhang, Feng
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [48] Temperature sensitivity of gross N transformation rates in an alpine meadow on the Qinghai-Tibetan Plateau
    Jing Wang
    Jinbo Zhang
    Christoph Müller
    Zucong Cai
    Journal of Soils and Sediments, 2017, 17 : 423 - 431
  • [49] Soil Erosion Assessment of Alpine Grassland in the Source Park of the Yellow River on the Qinghai-Tibetan Plateau, China
    Lin, Huilong
    Zhao, Yuting
    FRONTIERS IN ECOLOGY AND EVOLUTION, 2022, 9
  • [50] Temperature sensitivity of gross N transformation rates in an alpine meadow on the Qinghai-Tibetan Plateau
    Wang, Jing
    Zhang, Jinbo
    Mueller, Christoph
    Cai, Zucong
    JOURNAL OF SOILS AND SEDIMENTS, 2017, 17 (02) : 423 - 431