Extreme low air temperature and reduced moisture jointly inhibit respiration in alpine grassland on the Qinghai-Tibetan Plateau

被引:2
|
作者
Wang, Tonghong [1 ,2 ]
Wang, Xufeng [2 ,3 ]
Zhang, Songlin [1 ]
Song, Xiaoyu [2 ]
Zhang, Yang [2 ]
Tan, Junlei [2 ]
Ren, Zhiguo [2 ]
Xu, Ziwei [4 ]
Che, Tao [2 ]
Yang, Yanpeng [2 ]
Nawaz, Zain [5 ]
机构
[1] Northwest Normal Univ, Sch Geog & Environm Sci, Lanzhou 730000, Peoples R China
[2] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Key Lab Remote Sensing Gansu Prov, Heihe Remote Sensing Expt Res Stn, Lanzhou 730000, Peoples R China
[3] Qinghai Normal Univ, Acad Plateau Sci & Sustainabil, Xining 810016, Peoples R China
[4] Beijing Normal Univ, Sch Geog, State Key Lab Remote Sensing Sci, Beijing, Peoples R China
[5] Govt Coll Univ, Dept Geog, Faisalabad, Pakistan
基金
中国国家自然科学基金;
关键词
Alpine grassland; Carbon fluxes; Climate change; Extreme weather events; Eddy covariance; SOIL RESPIRATION; FOREST ECOSYSTEMS; CLIMATE EXTREMES; CARBON-DIOXIDE; MEADOW; DEPENDENCE; EXCHANGE; NITROGEN; BUDGETS; FLUXES;
D O I
10.1016/j.scitotenv.2024.172039
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Alpine grassland is the main vegetation on the Qinghai-Tibetan Plateau (QTP) and exhibits high sensitivity to extreme weather events. With global warming, extreme weather events are projected to become more frequent on the QTP. However, the impact of these extreme weather events on the carbon cycle of alpine grassland remains unclear. The long-term in - situ carbon fluxes data was collected from 2013 to 2022 at an alpine grassland site to examine the impact of extreme low air temperature (ELT) and reduced moisture (including air and soil) on carbon fluxes during the growing season. Our findings indicated that a significant increase in net ecosystem production (NEP) after 2019, with the average NEP increasing from 278.91 +/- 43.27 g C m - 2 year - 1 during 2013 -2018 to 415.45 +/- 45.29 g C m - 2 year - 1 during 2019 -2022. The ecosystem carbon use efficiency (CUE)
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Optimization yak grazing stocking rate in an alpine grassland of Qinghai-Tibetan Plateau, China
    Dong, Quan-Ming
    Zhao, Xin-Quan
    Wu, Gao-Lin
    Chang, Xiao-Feng
    ENVIRONMENTAL EARTH SCIENCES, 2015, 73 (05) : 2497 - 2503
  • [22] Quantifying Degradation Classifications on Alpine Grassland in the Lhasa River Basin, Qinghai-Tibetan Plateau
    Han, Wangya
    Lu, Huiting
    Liu, Guohua
    Wang, Jingsheng
    Su, Xukun
    SUSTAINABILITY, 2019, 11 (24)
  • [23] Effects of Grassland Tourism on Alpine Meadow Community and Soil Properties in the Qinghai-Tibetan Plateau
    Feng, Ling
    Gan, Mianyu
    Tian, Fu-Ping
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2019, 28 (06): : 4147 - 4152
  • [24] Reproductive responses of alpine plants to grassland degradation and artificial restoration in the Qinghai-Tibetan Plateau
    Dong, S. K.
    Wang, X. X.
    Liu, S. L.
    Li, Y. Y.
    Su, X. K.
    Wen, L.
    Zhu, L.
    GRASS AND FORAGE SCIENCE, 2015, 70 (02) : 229 - 238
  • [25] Grazing intensity modifies alpine grassland fine root traits on the Qinghai-Tibetan Plateau
    Xiang, Mingxue
    Luo, Ruikang
    Wu, Junxi
    Niu, Ben
    Pan, Ying
    Zhang, Xianzhou
    Duo, Lha
    Ma, Tao
    Han, Chenglong
    PLANT ECOLOGY, 2025, : 363 - 374
  • [26] The contribution of plateau pika disturbance and erosion on patchy alpine grassland soil on the Qinghai-Tibetan Plateau: Implications for grassland restoration
    Chen, Jianjun
    Yi, Shuhua
    Qin, Yu
    GEODERMA, 2017, 297 : 1 - 9
  • [27] Responses of microbial respiration to nitrogen addition in two alpine soils in the Qinghai-Tibetan Plateau
    Gao, Y. H.
    Ma, G.
    Zeng, X. Y.
    Xu, S. Q.
    Wang, D. X.
    JOURNAL OF ENVIRONMENTAL BIOLOGY, 2015, 36 (01): : 261 - 265
  • [28] Shrub encroachment accelerates the processes of moisture redistribution in alpine meadows on the Qinghai-Tibetan Plateau
    Zhao, Lirong
    Li, Kexin
    Zhu, Ni
    Gao, Junmei
    Zhang, Jing
    Wang, Di
    Wang, Xiaoli
    Wang, Yanlong
    Ma, Yushou
    Liu, Yu
    GEODERMA, 2025, 454
  • [29] Response of grassland growing season length to extreme climatic events on the Qinghai-Tibetan Plateau
    Zhong, Run
    Yan, Kai
    Gao, Si
    Yang, Kai
    Zhao, Shuang
    Ma, Xuanlong
    Zhu, Peng
    Fan, Lei
    Yin, Gaofei
    Science of the Total Environment, 2024, 909
  • [30] Response of grassland growing season length to extreme climatic events on the Qinghai-Tibetan Plateau
    Zhong, Run
    Yan, Kai
    Gao, Si
    Yang, Kai
    Zhao, Shuang
    Ma, Xuanlong
    Zhu, Peng
    Fan, Lei
    Yin, Gaofei
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 909