Existence of a ground-state solution for a quasilinear Schrödinger system

被引:0
|
作者
Zhang, Xue [1 ]
Zhang, Jing [1 ,2 ,3 ]
机构
[1] Inner Mongolia Normal Univ, Coll Math Sci, Hohhot, Inner Mongolia, Peoples R China
[2] Inner Mongolia Normal Univ, Key Lab Infinite Dimens Hamiltonian Syst & Its Alg, Minist Educ, Hohhot, Inner Mongolia, Peoples R China
[3] Inner Mongolia Normal Univ, Ctr Appl Math Inner Mongolia, Hohhot, Inner Mongolia, Peoples R China
来源
FRONTIERS IN PHYSICS | 2024年 / 12卷
关键词
quasilinear Schr & ouml; dinger system; Poho & zcaron; aev identity; ground-state solution; critical point theorem; Lebesgue dominated convergence theorem; SCHRODINGER-EQUATIONS; SOLITON-SOLUTIONS; MULTIPLE SOLUTIONS;
D O I
10.3389/fphy.2024.1386144
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider the following quasilinear Schr & ouml;dinger system. {-Delta u+u+k/2 Delta|u|(2)[]u=2 alpha/alpha+beta|(u|alpha)-(2)u|v|(beta), x is an element of R-N, -Delta v+v+k/2 Delta|v|2[]v2 beta/alpha+beta|u|alpha|v|(beta)-2v,x is an element of R-N, where k<0 is a real constant, alpha>1,beta>1, and alpha+beta<2*. We take advantage of the critical point theorem developed by Jeanjean (Proc. R. Soc. Edinburgh Sect A.,1999, 129: 787-809) and combine it with Poho & zcaron;aev identity to obtain the existence of a ground-state solution, which is the non-trivial solution with the least possible energy.
引用
收藏
页数:7
相关论文
共 50 条