Existence of a ground-state solution for a quasilinear Schrödinger system

被引:0
|
作者
Zhang, Xue [1 ]
Zhang, Jing [1 ,2 ,3 ]
机构
[1] Inner Mongolia Normal Univ, Coll Math Sci, Hohhot, Inner Mongolia, Peoples R China
[2] Inner Mongolia Normal Univ, Key Lab Infinite Dimens Hamiltonian Syst & Its Alg, Minist Educ, Hohhot, Inner Mongolia, Peoples R China
[3] Inner Mongolia Normal Univ, Ctr Appl Math Inner Mongolia, Hohhot, Inner Mongolia, Peoples R China
来源
FRONTIERS IN PHYSICS | 2024年 / 12卷
关键词
quasilinear Schr & ouml; dinger system; Poho & zcaron; aev identity; ground-state solution; critical point theorem; Lebesgue dominated convergence theorem; SCHRODINGER-EQUATIONS; SOLITON-SOLUTIONS; MULTIPLE SOLUTIONS;
D O I
10.3389/fphy.2024.1386144
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider the following quasilinear Schr & ouml;dinger system. {-Delta u+u+k/2 Delta|u|(2)[]u=2 alpha/alpha+beta|(u|alpha)-(2)u|v|(beta), x is an element of R-N, -Delta v+v+k/2 Delta|v|2[]v2 beta/alpha+beta|u|alpha|v|(beta)-2v,x is an element of R-N, where k<0 is a real constant, alpha>1,beta>1, and alpha+beta<2*. We take advantage of the critical point theorem developed by Jeanjean (Proc. R. Soc. Edinburgh Sect A.,1999, 129: 787-809) and combine it with Poho & zcaron;aev identity to obtain the existence of a ground-state solution, which is the non-trivial solution with the least possible energy.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Existence of Weak Solutions for Generalized Quasilinear Schrödinger Equations
    Hongxue Song
    Caisheng Chen
    Journal of Dynamical and Control Systems, 2016, 22 : 369 - 383
  • [32] Existence of a Ground State Solution for a Quasilinear Schrodinger Equation
    Fang, Xiang-dong
    Han, Zhi-qing
    ADVANCED NONLINEAR STUDIES, 2014, 14 (04) : 941 - 950
  • [33] Sharp conditions of global existence for the quasilinear Schrödinger equation
    J. Zhang
    J. Shu
    Functional Analysis and Its Applications, 2008, 42
  • [34] Existence and multiplicity results for a multiparameter quasilinear Schrödinger equation
    Francisco Julio S. A. Corrêa
    Gelson C. G. dos Santos
    Leandro S. Tavares
    Analysis and Mathematical Physics, 2023, 13
  • [35] Existence of Solutions for a Quasilinear Schr?dinger Equation with Potential Vanishing
    Yan-fang XUE
    Jian-xin HAN
    Xin-cai ZHU
    ActaMathematicaeApplicataeSinica, 2023, 39 (03) : 696 - 706
  • [36] Positive Ground State Solutions for Generalized Quasilinear Schrödinger Equations with Critical Growth
    Xin Meng
    Shuguan Ji
    The Journal of Geometric Analysis, 2023, 33
  • [37] Existence of Solutions for a Quasilinear Schrödinger Equation with Potential Vanishing
    Yan-fang Xue
    Jian-xin Han
    Xin-cai Zhu
    Acta Mathematicae Applicatae Sinica, English Series, 2023, 39 : 696 - 706
  • [38] Existence of a positive bound state solution for logarithmic Schrödinger equation
    Feng, Weixun
    Tang, Xianhua
    Zhang, Luyu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (02)
  • [39] Hybrid ground-state quantum algorithms based on neural Schrödinger forging
    de Schoulepnikoff, Paulin
    Kiss, Oriel
    Vallecorsa, Sofia
    Carleo, Giuseppe
    Grossi, Michele
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [40] Existence of a ground state and scattering for a nonlinear Schrödinger equation with critical growth
    Takafumi Akahori
    Slim Ibrahim
    Hiroaki Kikuchi
    Hayato Nawa
    Selecta Mathematica, 2013, 19 : 545 - 609