Unsupervised Visual Anomaly Detection Using Self-Supervised Pre-Trained Transformer

被引:0
|
作者
Kim, Jun-Hyung [1 ]
Kwon, Goo-Rak [1 ]
机构
[1] Chosun Univ, Dept Informat & Commun Engn, Gwangju 61452, South Korea
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Image reconstruction; Image segmentation; Transformers; Computational modeling; Location awareness; Feature extraction; Anomaly detection; Data augmentation; Self-supervised learning; data-augmentation; self-supervised learning; transformer;
D O I
10.1109/ACCESS.2024.3454753
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the various industrial manufacturing processes, the automatic visual inspection system is an essential part as it reduces the chances of delivering defective products and the cost of training and hiring experts for manual inspection. In this work, we propose a new unsupervised anomaly detection method inspired by the masked language model for the automatic visual inspection system. The proposed method consists of an image tokenizer and two subnetworks, a reconstruction subnetwork, and a segmentation subnetwork. We adopt a pre-trained self-supervised vision Transformer model to use it as an image tokenizer. Our first subnetwork is trained to predict the anomaly-free patch tokens and the second subnetwork is trained to produce anomaly segmentation results from both the reconstructed and input patch tokens. During training, only the two subnetworks are optimized, and parameters of an image tokenizer are frozen. Experimental results show that the proposed method exhibits better performance than conventional methods in detecting defective products by achieving 99.05% I-AUROC on MVTecAD dataset and 94.8% I-AUROC on BTAD.
引用
收藏
页码:127604 / 127613
页数:10
相关论文
共 50 条
  • [31] Token Boosting for Robust Self-Supervised Visual Transformer Pre-training
    Li, Tianjiao
    Foo, Lin Geng
    Hu, Ping
    Shang, Xindi
    Rahmani, Hossein
    Yuan, Zehuan
    Liu, Jun
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 24027 - 24038
  • [32] Generative Pre-Trained Transformer for Cardiac Abnormality Detection
    Gaudilliere, Pierre Louis
    Sigurthorsdottir, Halla
    Aguet, Clementine
    Van Zaen, Jerome
    Lemay, Mathieu
    Delgado-Gonzalo, Ricard
    [J]. 2021 COMPUTING IN CARDIOLOGY (CINC), 2021,
  • [33] WAKE: A Weakly Supervised Business Process Anomaly Detection Framework via a Pre-Trained Autoencoder
    Guan, Wei
    Cao, Jian
    Zhao, Haiyan
    Gu, Yang
    Qian, Shiyou
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (06) : 2745 - 2758
  • [34] Integrally Migrating Pre-trained Transformer Encoder-decoders for Visual Object Detection
    Liu, Feng
    Zhang, Xiaosong
    Peng, Zhiliang
    Guo, Zonghao
    Wan, Fang
    Ji, Xiangyang
    Ye, Qixiang
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 6802 - 6811
  • [35] A PRE-TRAINED AUDIO-VISUAL TRANSFORMER FOR EMOTION RECOGNITION
    Minh Tran
    Soleymani, Mohammad
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4698 - 4702
  • [36] Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images
    Tian, Yu
    Liu, Fengbei
    Pang, Guansong
    Chen, Yuanhong
    Liu, Yuyuan
    Verjans, Johan W.
    Singh, Rajvinder
    Carneiro, Gustavo
    [J]. MEDICAL IMAGE ANALYSIS, 2023, 90
  • [37] NODULE DETECTION IN CHEST RADIOGRAPHS WITH UNSUPERVISED PRE-TRAINED DETECTION TRANSFORMERS
    Behrendt, Finn
    Bhattacharya, Debayan
    Krueger, Julia
    Opfer, Roland
    Schlaefer, Alexander
    [J]. 2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [38] CheSS: Chest X-Ray Pre-trained Model via Self-supervised Contrastive Learning
    Kyungjin Cho
    Ki Duk Kim
    Yujin Nam
    Jiheon Jeong
    Jeeyoung Kim
    Changyong Choi
    Soyoung Lee
    Jun Soo Lee
    Seoyeon Woo
    Gil-Sun Hong
    Joon Beom Seo
    Namkug Kim
    [J]. Journal of Digital Imaging, 2023, 36 : 902 - 910
  • [39] CheSS: Chest X-Ray Pre-trained Model via Self-supervised Contrastive Learning
    Cho, Kyungjin
    Kim, Ki Duk
    Nam, Yujin
    Jeong, Jiheon
    Kim, Jeeyoung
    Choi, Changyong
    Lee, Soyoung
    Lee, Jun Soo
    Woo, Seoyeon
    Hong, Gil-Sun
    Seo, Joon Beom
    Kim, Namkug
    [J]. JOURNAL OF DIGITAL IMAGING, 2023, 36 (03) : 902 - 910
  • [40] SSCLNet: A Self-Supervised Contrastive Loss-Based Pre-Trained Network for Brain MRI Classification
    Mishra, Animesh
    Jha, Ritesh
    Bhattacharjee, Vandana
    [J]. IEEE ACCESS, 2023, 11 : 6673 - 6681