Token Boosting for Robust Self-Supervised Visual Transformer Pre-training

被引:1
|
作者
Li, Tianjiao [1 ]
Foo, Lin Geng [1 ]
Hu, Ping [2 ]
Shang, Xindi [3 ]
Rahmani, Hossein [4 ]
Yuan, Zehuan [3 ]
Liu, Jun [1 ]
机构
[1] Singapore Univ Technol & Design, Singapore, Singapore
[2] Boston Univ, Boston, MA 02215 USA
[3] ByteDance, Beijing, Peoples R China
[4] Univ Lancaster, Lancaster, England
基金
新加坡国家研究基金会; 欧盟地平线“2020”;
关键词
OBJECT;
D O I
10.1109/CVPR52729.2023.02301
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning with large-scale unlabeled data has become a powerful tool for pre-training Visual Transformers (VTs). However, prior works tend to overlook that, in real-world scenarios, the input data may be corrupted and unreliable. Pre-training VTs on such corrupted data can be challenging, especially when we pre-train via the masked autoencoding approach, where both the inputs and masked "ground truth" targets can potentially be unreliable in this case. To address this limitation, we introduce the Token Boosting Module (TBM) as a plug-and-play component for VTs that effectively allows the VT to learn to extract clean and robust features during masked autoencoding pre-training. We provide theoretical analysis to show how TBM improves model pre-training with more robust and generalizable representations, thus benefiting downstream tasks. We conduct extensive experiments to analyze TBM's effectiveness, and results on four corrupted datasets demonstrate that TBM consistently improves performance on downstream tasks.
引用
收藏
页码:24027 / 24038
页数:12
相关论文
共 50 条
  • [1] DiT: Self-supervised Pre-training for Document Image Transformer
    Li, Junlong
    Xu, Yiheng
    Lv, Tengchao
    Cui, Lei
    Zhang, Cha
    Wei, Furu
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 3530 - 3539
  • [2] UniVIP: A Unified Framework for Self-Supervised Visual Pre-training
    Li, Zhaowen
    Zhu, Yousong
    Yang, Fan
    Li, Wei
    Zhao, Chaoyang
    Chen, Yingying
    Chen, Zhiyang
    Xie, Jiahao
    Wu, Liwei
    Zhao, Rui
    Tang, Ming
    Wang, Jinqiao
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 14607 - 14616
  • [3] Dense Contrastive Learning for Self-Supervised Visual Pre-Training
    Wang, Xinlong
    Zhang, Rufeng
    Shen, Chunhua
    Kong, Tao
    Li, Lei
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 3023 - 3032
  • [4] Masked Feature Prediction for Self-Supervised Visual Pre-Training
    Wei, Chen
    Fan, Haoqi
    Xie, Saining
    Wu, Chao-Yuan
    Yuille, Alan
    Feichtenhofer, Christoph
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 14648 - 14658
  • [5] Correlational Image Modeling for Self-Supervised Visual Pre-Training
    Li, Wei
    Xie, Jiahao
    Loy, Chen Change
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 15105 - 15115
  • [6] Self-supervised ECG pre-training
    Liu, Han
    Zhao, Zhenbo
    She, Qiang
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 70
  • [7] DenseCL: A simple framework for self-supervised dense visual pre-training
    Wang, Xinlong
    Zhang, Rufeng
    Shen, Chunhua
    Kong, Tao
    VISUAL INFORMATICS, 2023, 7 (01) : 30 - 40
  • [8] SslTransT: Self-supervised pre-training visual object tracking with Transformers
    Cai, Yannan
    Tan, Ke
    Wei, Zhenzhong
    OPTICS COMMUNICATIONS, 2024, 557
  • [9] Self-supervised Pre-training for Mirror Detection
    Lin, Jiaying
    Lau, Rynson W. H.
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 12193 - 12202
  • [10] EFFECTIVENESS OF SELF-SUPERVISED PRE-TRAINING FOR ASR
    Baevski, Alexei
    Mohamed, Abdelrahman
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 7694 - 7698