Predictive Modeling for Identifying Breast Cancer Patients Eligible for Axillary Lymph Node Dissection Exemption Following Neoadjuvant Therapy: A Longitudinal MRI-based Radiomics and Deep Learning Features Analysis

被引:0
|
作者
Yu, Yushuai
Yi, Jialu
Chen, Ruiliang
Huang, Kaiyan
Zhang, Jie
Song, Chuangui
机构
关键词
D O I
10.1158/1538-7445.SABCS23-PO3-07-07
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
PO3-07- 07
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Routine Axillary Ultrasound for Patients with T1-T2 Breast Cancer Does Not Increase the Rate of Axillary Lymph Node Dissection Based on Predictive Modeling
    Wellington, Jennifer
    Sanders, Thomas
    Mylander, Charles
    Alden, Ashley
    Harris, Christine
    Buras, Robert
    Tafra, Lorraine
    Liang, Wen
    Stelle, Lacey
    Rosman, Martin
    Jackson, Rubie Sue
    ANNALS OF SURGICAL ONCOLOGY, 2018, 25 (08) : 2271 - 2278
  • [32] Delta dual-region DCE-MRI radiomics from breast masses predicts axillary lymph node response after neoadjuvant therapy for breast cancer
    Zeng, Qiao
    Deng, Yiwen
    Nan, Jiayu
    Zou, Zhennan
    Yu, Tenghua
    Liu, Lan
    BMC CANCER, 2025, 25 (01)
  • [33] Predicting axillary lymph node metastasis in breast cancer patients: A radiomics-based multicenter approach with interpretability analysis
    Liu, Zilin
    Hong, Minping
    Li, Xinhua
    Lin, Lifu
    Tan, Xueyuan
    Liu, Yushuang
    EUROPEAN JOURNAL OF RADIOLOGY, 2024, 176
  • [34] Deep learning radiomics for prediction of axillary lymph node metastasis in patients with clinical stage T1-2 breast cancer
    Wei, Wei
    Ma, Qiang
    Feng, Huijun
    Wei, Tianjun
    Jiang, Feng
    Fan, Lifang
    Zhang, Wei
    Xu, Jingya
    Zhang, Xia
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2023, 13 (08) : 4995 - +
  • [35] Prediction of axillary lymph node metastasis in early breast cancer patients with ultrasonic videos based deep learning
    Li, Wei-Bin
    Du, Zhi-Cheng
    Liu, Yue-Jie
    Gao, Jun-Xue
    Wang, Jia-Gang
    Dai, Qian
    Huang, Wen-He
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [36] MRI-Based Radiomics Analysis for the Pretreatment Prediction of Pathologic Complete Tumor Response to Neoadjuvant Systemic Therapy in Breast Cancer Patients: A Multicenter Study
    Granzier, Renee W. Y.
    Ibrahim, Abdalla
    Primakov, Sergey P.
    Samiei, Sanaz
    van Nijnatten, Thiemo J. A.
    de Boer, Maaike
    Heuts, Esther M.
    Hulsmans, Frans-Jan
    Chatterjee, Avishek
    Lambin, Philippe
    Lobbes, Marc B. I.
    Woodruff, Henry C.
    Smidt, Marjolein L.
    CANCERS, 2021, 13 (10)
  • [37] Diagnostic performance of DCE-MRI radiomics in predicting axillary lymph node metastasis in breast cancer patients: A meta-analysis
    Dong, Fei
    Li, Jie
    Wang, Junbo
    Yang, Xiaohui
    PLOS ONE, 2024, 19 (12):
  • [38] A meta-analysis of MRI-based radiomic features for predicting lymph node metastasis in patients with cervical cancer
    Li, Longchao
    Zhang, Jing
    Zhe, Xia
    Tang, Min
    Zhang, Xiaoling
    Lei, Xiaoyan
    Zhang, Li
    EUROPEAN JOURNAL OF RADIOLOGY, 2022, 151
  • [39] Routine Axillary Ultrasound for Patients with T1–T2 Breast Cancer Does Not Increase the Rate of Axillary Lymph Node Dissection Based on Predictive Modeling
    Jennifer Wellington
    Thomas Sanders
    Charles Mylander
    Ashley Alden
    Christine Harris
    Robert Buras
    Lorraine Tafra
    Wen Liang
    Lacey Stelle
    Martin Rosman
    Rubie Sue Jackson
    Annals of Surgical Oncology, 2018, 25 : 2271 - 2278
  • [40] The Diagnostic Performance of Machine Learning-Based Radiomics of DCE-MRI in Predicting Axillary Lymph Node Metastasis in Breast Cancer: A Meta-Analysis
    Zhang, Jing
    Li, Longchao
    Zhe, Xia
    Tang, Min
    Zhang, Xiaoling
    Lei, Xiaoyan
    Zhang, Li
    FRONTIERS IN ONCOLOGY, 2022, 12