Predictive Modeling for Identifying Breast Cancer Patients Eligible for Axillary Lymph Node Dissection Exemption Following Neoadjuvant Therapy: A Longitudinal MRI-based Radiomics and Deep Learning Features Analysis

被引:0
|
作者
Yu, Yushuai
Yi, Jialu
Chen, Ruiliang
Huang, Kaiyan
Zhang, Jie
Song, Chuangui
机构
关键词
D O I
10.1158/1538-7445.SABCS23-PO3-07-07
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
PO3-07- 07
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Deep learning radiomics of ultrasonography for comprehensively predicting tumor and axillary lymph node status after neoadjuvant chemotherapy in breast cancer patients: A multicenter study
    Gu, Jionghui
    Tong, Tong
    Xu, Dong
    Cheng, Fang
    Fang, Chengyu
    He, Chang
    Wang, Jing
    Wang, Baohua
    Yang, Xin
    Wang, Kun
    Tian, Jie
    Jiang, Tian'an
    CANCER, 2023, 129 (03) : 356 - 366
  • [22] Preoperative prediction of axillary sentinel lymph node burden with multiparametric MRI-based radiomics nomogram in early-stage breast cancer
    Zhang, Xiang
    Yang, Zehong
    Cui, Wenju
    Zheng, Chushan
    Li, Haojiang
    Li, Yudong
    Lu, Liejing
    Mao, Jiaji
    Zeng, Weike
    Yang, Xiaodong
    Zheng, Jian
    Shen, Jun
    EUROPEAN RADIOLOGY, 2021, 31 (08) : 5924 - 5939
  • [23] Preoperative prediction of axillary sentinel lymph node burden with multiparametric MRI-based radiomics nomogram in early-stage breast cancer
    Xiang Zhang
    Zehong Yang
    Wenju Cui
    Chushan Zheng
    Haojiang Li
    Yudong Li
    Liejing Lu
    Jiaji Mao
    Weike Zeng
    Xiaodong Yang
    Jian Zheng
    Jun Shen
    European Radiology, 2021, 31 : 5924 - 5939
  • [24] Deep Learning Radiomics Nomogram Based on Multiphase Computed Tomography for Predicting Axillary Lymph Node Metastasis in Breast Cancer
    Zhang, Jieqiu
    Yin, Wei
    Yang, Lu
    Yao, Xiaopeng
    MOLECULAR IMAGING AND BIOLOGY, 2024, 26 (01) : 90 - 100
  • [25] Deep Learning Radiomics Nomogram Based on Multiphase Computed Tomography for Predicting Axillary Lymph Node Metastasis in Breast Cancer
    Jieqiu Zhang
    Wei Yin
    Lu Yang
    Xiaopeng Yao
    Molecular Imaging and Biology, 2024, 26 : 90 - 100
  • [26] Predicting lymph node metastasis in thyroid cancer: systematic review and meta-analysis on the CT/MRI-based radiomics and deep learning models
    Valizadeh, Parya
    Jannatdoust, Payam
    Ghadimi, Delaram J.
    Bagherieh, Sara
    Hassankhani, Amir
    Amoukhteh, Melika
    Adli, Paniz
    Gholamrezanezhad, Ali
    CLINICAL IMAGING, 2025, 119
  • [27] Routine axillary ultrasound for patients with T1-2 breast cancer does not increase the rate of axillary lymph node dissection, based on predictive modeling
    Wellington, Jennifer
    Ashley, Alden
    Sanders, Thomas
    Stelle, Lacey
    Harris, Christine
    Rosman, Martin
    Mylander, Charles
    Tafra, Lorraine
    Buras, Robert
    Wen, Liang
    Jackson, Rubie
    ANNALS OF SURGICAL ONCOLOGY, 2018, 25 : 512 - 513
  • [28] Preoperative ultrasound following pertuzumab-based neoadjuvant therapy for breast cancer: A novel modality to predict fewer lymph nodes retrieved on axillary lymph node dissection
    O'Leary, Michael
    Beckord, Brian
    Mock, Kyle
    Yeh, James
    Ozao-Choy, Junko
    Dauphine, Christine
    ANNALS OF SURGICAL ONCOLOGY, 2017, 24 : 142 - 143
  • [29] An unsupervised learning model based on CT radiomics features accurately predicts axillary lymph node metastasis in breast cancer patients: diagnostic study
    Qu, Limeng
    Mei, Xilong
    Yi, Zixi
    Zou, Qiongyan
    Zhou, Qin
    Zhang, Danhua
    Zhou, Meirong
    Pei, Lei
    Long, Qian
    Meng, Jiahao
    Zhang, Huashan
    Chen, Qitong
    Yi, Wenjun
    INTERNATIONAL JOURNAL OF SURGERY, 2024, 110 (09) : 5363 - 5373
  • [30] A nomogram based on radiomics signature and deep-learning signature for preoperative prediction of axillary lymph node metastasis in breast cancer
    Wang, Dawei
    Hu, Yiqi
    Zhan, Chenao
    Zhang, Qi
    Wu, Yiping
    Ai, Tao
    FRONTIERS IN ONCOLOGY, 2022, 12