Pseudo-spin switches and Aharonov-Bohm effect for topological boundary modes

被引:5
|
作者
Kawaguchi, Yuma [1 ]
Smirnova, Daria [2 ]
Komissarenko, Filipp [1 ]
Kiriushechkina, Svetlana [1 ]
Vakulenko, Anton [1 ]
Li, Mengyao [3 ]
Alu, Andrea [1 ,4 ,5 ]
Khanikaev, Alexander B. [1 ,5 ,6 ]
机构
[1] CUNY City Coll, Dept Elect Engn, New York, NY 10031 USA
[2] Australian Natl Univ, Res Sch Phys, Canberra, ACT 2601, Australia
[3] Tsinghua Univ, Inst Mat Res, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
[4] CUNY, Adv Sci Res Ctr, Photon Initiat, New York, NY 10031 USA
[5] CUNY, Grad Ctr, Phys Program, New York, NY 10016 USA
[6] CUNY, Dept Phys, New York, NY 10031 USA
来源
SCIENCE ADVANCES | 2024年 / 10卷 / 15期
基金
澳大利亚研究理事会;
关键词
Landforms; -; Photonics; Topology;
D O I
10.1126/sciadv.adn6095
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Topological boundary modes in electronic and classical-wave systems exhibit fascinating properties. In photonics, topological nature of boundary modes can make them robust and endows them with an additional internal structure-pseudo-spins. Here, we introduce heterogeneous boundary modes, which are based on mixing two of the most widely used topological photonics platforms-the pseudo-spin-Hall-like and valley-Hall photonic topological insulators. We predict and confirm experimentally that transformation between the two, realized by altering the lattice geometry, enables a continuum of boundary states carrying both pseudo-spin and valley degrees of freedom (DoFs). When applied adiabatically, this leads to conversion between pseudo-spin and valley polarization. We show that such evolution gives rise to a geometrical phase associated with the synthetic gauge fields, which is confirmed via an Aharonov-Bohm type experiment on a silicon chip. Our results unveil a versatile approach to manipulating properties of topological photonic states and envision topological photonics as a powerful platform for devices based on synthetic DoFs.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Nonlocality and the Aharonov-Bohm effect
    Healey, R
    PHILOSOPHY OF SCIENCE, 1997, 64 (01) : 18 - 41
  • [32] On the nature of the Aharonov-Bohm effect
    A. G. Chirkov
    A. N. Ageev
    Technical Physics, 2001, 46 : 147 - 153
  • [33] ON A GRAVITATIONAL AHARONOV-BOHM EFFECT
    JENSEN, B
    KUCERA, J
    JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (11) : 4975 - 4985
  • [34] The rovibrational Aharonov-Bohm effect
    Rawlinson, Jonathan I.
    Fabri, Csaba
    Csaszar, Attila G.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (42) : 24154 - 24164
  • [35] On the nature of the Aharonov-Bohm effect
    Chirkov, AG
    Ageev, AN
    TECHNICAL PHYSICS, 2001, 46 (02) : 147 - 153
  • [36] THE OPTICAL AHARONOV-BOHM EFFECT
    EVANS, MW
    FOUNDATIONS OF PHYSICS LETTERS, 1994, 7 (05) : 467 - 474
  • [37] CHALLENGES FOR THE AHARONOV-BOHM EFFECT
    ZAILER, I
    PHYSICS WORLD, 1995, 8 (04) : 34 - 35
  • [38] AHARONOV-BOHM EFFECT REVISITED
    KOBE, DH
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (04): : 682 - 682
  • [39] IS THERE AN AHARONOV-BOHM EFFECT FOR NEUTRONS
    GREENBERGER, DM
    ATWOOD, DK
    ARTHUR, J
    SHULL, CG
    SCHLENKER, M
    PHYSICAL REVIEW LETTERS, 1981, 47 (11) : 751 - 754
  • [40] Aharonov-Bohm interference in topological insulator nanoribbons
    Peng H.
    Lai K.
    Kong D.
    Meister S.
    Chen Y.
    Qi X.-L.
    Zhang S.-C.
    Shen Z.-X.
    Cui Y.
    Nature Materials, 2010, 9 (3) : 225 - 229