Pseudo-spin switches and Aharonov-Bohm effect for topological boundary modes

被引:5
|
作者
Kawaguchi, Yuma [1 ]
Smirnova, Daria [2 ]
Komissarenko, Filipp [1 ]
Kiriushechkina, Svetlana [1 ]
Vakulenko, Anton [1 ]
Li, Mengyao [3 ]
Alu, Andrea [1 ,4 ,5 ]
Khanikaev, Alexander B. [1 ,5 ,6 ]
机构
[1] CUNY City Coll, Dept Elect Engn, New York, NY 10031 USA
[2] Australian Natl Univ, Res Sch Phys, Canberra, ACT 2601, Australia
[3] Tsinghua Univ, Inst Mat Res, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
[4] CUNY, Adv Sci Res Ctr, Photon Initiat, New York, NY 10031 USA
[5] CUNY, Grad Ctr, Phys Program, New York, NY 10016 USA
[6] CUNY, Dept Phys, New York, NY 10031 USA
来源
SCIENCE ADVANCES | 2024年 / 10卷 / 15期
基金
澳大利亚研究理事会;
关键词
Landforms; -; Photonics; Topology;
D O I
10.1126/sciadv.adn6095
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Topological boundary modes in electronic and classical-wave systems exhibit fascinating properties. In photonics, topological nature of boundary modes can make them robust and endows them with an additional internal structure-pseudo-spins. Here, we introduce heterogeneous boundary modes, which are based on mixing two of the most widely used topological photonics platforms-the pseudo-spin-Hall-like and valley-Hall photonic topological insulators. We predict and confirm experimentally that transformation between the two, realized by altering the lattice geometry, enables a continuum of boundary states carrying both pseudo-spin and valley degrees of freedom (DoFs). When applied adiabatically, this leads to conversion between pseudo-spin and valley polarization. We show that such evolution gives rise to a geometrical phase associated with the synthetic gauge fields, which is confirmed via an Aharonov-Bohm type experiment on a silicon chip. Our results unveil a versatile approach to manipulating properties of topological photonic states and envision topological photonics as a powerful platform for devices based on synthetic DoFs.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Inverse boundary value problems and the Aharonov-Bohm effect
    Eskin, G
    INVERSE PROBLEMS, 2003, 19 (01) : 49 - 62
  • [22] Putting a spin on the Aharonov-Bohm oscillations
    Anandan, J
    SCIENCE, 2002, 297 (5587) : 1656 - 1657
  • [23] AHARONOV-BOHM SCATTERING OF PARTICLES WITH SPIN
    HAGEN, CR
    PHYSICAL REVIEW LETTERS, 1990, 64 (05) : 503 - 506
  • [24] Double Aharonov-Bohm effect in a medium with a linear topological defect
    Vieira, SR
    Azevedo, S
    PHYSICS LETTERS A, 2001, 288 (01) : 29 - 32
  • [25] On the alleged nonlocal and topological nature of the molecular Aharonov-Bohm effect
    Sjöqvist, E
    ADVANCES IN QUANTUM CHEMISTRY, VOL 47: A TRIBUTE VOLUME IN HONOR OF PROFESSOR OSVALDO GOSCINSKI, 2004, 47 : 239 - 252
  • [26] Topological Edge Modes in Non-Hermitian Photonic Aharonov-Bohm Cages
    Ke, Shaolin
    Zhao, Dong
    Fu, Jie
    Liao, Qing
    Wang, Bing
    Lu, Peixiang
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2020, 26 (06)
  • [27] Aharonov-Casher and Scalar Aharonov-Bohm Topological Effects
    Dulat, Sayipjamal
    Ma, Kai
    PHYSICAL REVIEW LETTERS, 2012, 108 (07)
  • [28] Aharonov-Bohm problem for spin 1
    Horner, ML
    Goldhaber, AS
    PHYSICAL REVIEW D, 1997, 55 (10) : 5951 - 5956
  • [29] Aharonov-Bohm problem for spin I
    Horner, M. L.
    Goldhaber, A. S.
    Physical Review D Particles, Fields, Gravitation and Cosmology, 55 (10):
  • [30] Aharonov-Bohm interference in topological insulator nanoribbons
    Peng, Hailin
    Lai, Keji
    Kong, Desheng
    Meister, Stefan
    Chen, Yulin
    Qi, Xiao-Liang
    Zhang, Shou-Cheng
    Shen, Zhi-Xun
    Cui, Yi
    NATURE MATERIALS, 2010, 9 (03) : 225 - 229