Subpixel Object Tracking in RGB Intensity and Depth Imagery

被引:0
|
作者
Smith, Eric G. [1 ]
Diskin, Yakov [1 ]
Asari, Vijayan K. [1 ]
机构
[1] Univ Dayton, Dept Elect & Comp Engn ECE, 300 Coll Pk, Dayton, OH 45469 USA
来源
关键词
Tracking; kernelized correlation filters (KCF); phase correlation (PC); template dissimilarity assessment (TDA); Histogram of Oriented Gradients (HOG); Pose Estimation; Subpixel; RGB-D; 2.5D;
D O I
10.1117/12.3018534
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper examines the challenges of object tracking algorithms performing on RGB-D data. We analyze and quantify the performance of common state-of-the-art tracking methods performing on the intensity and depth channels. This paper investigates the tracking performance characteristics of intensity and depth channel processing separate and in conjunction within complex RGB-D scenes with moving objects. A new assessment metric is introduced, called template dissimilarity assessment (TDA), to score the performance of individual tracking methods and determine when track is lost and re-initialization is appropriate. Various tracking metrics are directly compared between intensity and depth data sets. The overall performance and the advantages of the intensity and depth tracking approaches are emphasized. Lastly, the overall performance assessment includes the algorithmic computational expense, measured via processor timing tests.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Robust Multiple Object Tracking in RGB-D Camera Networks
    Zhao, Yongheng
    Carraro, Marco
    Munaro, Matteo
    Menegatti, Emanuele
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 6625 - 6632
  • [42] RGB-D SLAM with moving object tracking in dynamic environments
    Dai, Weichen
    Zhang, Yu
    Zheng, Yuxin
    Sun, Donglei
    Li, Ping
    IET CYBER-SYSTEMS AND ROBOTICS, 2021, 3 (04) : 281 - 291
  • [43] Self-supervised learning for RGB-D object tracking
    Zhu, Xue-Feng
    Xu, Tianyang
    Atito, Sara
    Awais, Muhammad
    Wu, Xiao-Jun
    Feng, Zhenhua
    Kittler, Josef
    PATTERN RECOGNITION, 2024, 155
  • [44] An Object Tracking Using a Neuromorphic System Based on Standard RGB Cameras
    Gouveia, E. B.
    Vasconcelos, L. M.
    Gouveia, E. L. S.
    Costa, V. T.
    Nakagawa-Silva, A.
    Soares, A. B.
    XXVII BRAZILIAN CONGRESS ON BIOMEDICAL ENGINEERING, CBEB 2020, 2022, : 2271 - 2275
  • [45] Learning a Twofold Siamese Network for RGB-T Object Tracking
    Kuai, Yangliu
    Li, Dongdong
    Qian, Que
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2021, 30 (05)
  • [46] Subpixel mapping of raw hyperspectral imagery
    Wang, Liguo
    Zhao, ChunHui
    Zhang, Ye
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2007, 14 : 1770 - 1773
  • [47] Space Object Recognition With Stacking of CoAtNets Using Fusion of RGB and Depth Images
    Aldahoul, Nouar
    Karim, Hezerul Abdul
    Momo, Mhd Adel
    Escobara, Francesca Isabelle Flores
    Tan, Myles Joshua Toledo
    IEEE ACCESS, 2023, 11 : 5089 - 5109
  • [48] Integration of Texture and Depth Information for Robust Object Tracking
    Lin, Yu-Hang
    Chen, Ju-Chin
    Lin, Kawuu W.
    2014 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING (GRC), 2014, : 170 - 174
  • [49] Occlusion Handling based on Projective Depth in Object Tracking
    Park, Hwa-Jin
    2015 5TH INTERNATIONAL CONFERENCE ON IT CONVERGENCE AND SECURITY (ICITCS), 2015,
  • [50] Delving into Calibrated Depth for Accurate RGB-D Salient Object Detection
    Li, Jingjing
    Ji, Wei
    Zhang, Miao
    Piao, Yongri
    Lu, Huchuan
    Cheng, Li
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (04) : 855 - 876