Subpixel Object Tracking in RGB Intensity and Depth Imagery

被引:0
|
作者
Smith, Eric G. [1 ]
Diskin, Yakov [1 ]
Asari, Vijayan K. [1 ]
机构
[1] Univ Dayton, Dept Elect & Comp Engn ECE, 300 Coll Pk, Dayton, OH 45469 USA
来源
PATTERN RECOGNITION AND PREDICTION XXXV | 2024年 / 13040卷
关键词
Tracking; kernelized correlation filters (KCF); phase correlation (PC); template dissimilarity assessment (TDA); Histogram of Oriented Gradients (HOG); Pose Estimation; Subpixel; RGB-D; 2.5D;
D O I
10.1117/12.3018534
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper examines the challenges of object tracking algorithms performing on RGB-D data. We analyze and quantify the performance of common state-of-the-art tracking methods performing on the intensity and depth channels. This paper investigates the tracking performance characteristics of intensity and depth channel processing separate and in conjunction within complex RGB-D scenes with moving objects. A new assessment metric is introduced, called template dissimilarity assessment (TDA), to score the performance of individual tracking methods and determine when track is lost and re-initialization is appropriate. Various tracking metrics are directly compared between intensity and depth data sets. The overall performance and the advantages of the intensity and depth tracking approaches are emphasized. Lastly, the overall performance assessment includes the algorithmic computational expense, measured via processor timing tests.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Multiple human tracking in RGB-depth data: a survey
    Camplani, Massimo
    Paiement, Adeline
    Mirmehdi, Majid
    Damen, Dima
    Hannuna, Sion
    Burghardt, Tilo
    Tao, Lili
    IET COMPUTER VISION, 2017, 11 (04) : 265 - 285
  • [22] Attention and Pixel Matching in RGB-T Object Tracking
    Li, Da
    Zhang, Yao
    Chen, Min
    Chai, Haoxiang
    MATHEMATICS, 2023, 11 (07)
  • [23] Robust Object Tracking based on RGB-D Camera
    Qi, Wenjing
    Yang, Yinfei
    Yi, Meng
    Li, Yunfeng
    Pizlo, Zygmunt
    Latecki, Longin Jan
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 2873 - 2878
  • [24] Comparative Analysis of Discrete Subtraction and Cross-Correlation for Subpixel Object Tracking
    Ferrer, Belen
    Tomas, Maria-Baralida
    Wan, Min
    Sheridan, John T.
    Mas, David
    APPLIED SCIENCES-BASEL, 2023, 13 (14):
  • [25] Depth Sensor Calibration by Tracking an Extended Object
    Faion, Florian
    Baum, Marcus
    Zea, Antonio
    Hanebeck, Uwe D.
    2015 IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS (MFI), 2015, : 19 - 24
  • [26] Object tracking based on depth sparse learning
    Zhou Yang
    Hu Xuelong
    Li Chunxiao
    Yang Chenhui
    PROCEEDINGS OF 2017 13TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS (ICEMI), VOL 1, 2017, : 145 - 150
  • [27] Object tracking based on optical flow and depth
    Okada, R
    Shirai, Y
    Miura, J
    MF '96 - 1996 IEEE/SICE/RSJ INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS, 1996, : 565 - 571
  • [28] Semantic-guided fusion for multiple object tracking and RGB-T tracking
    Liu, Xiaohu
    Luo, Yichuang
    Zhang, Yan
    Lei, Zhiyong
    IET IMAGE PROCESSING, 2023, 17 (11) : 3281 - 3291
  • [29] Detection of object wings in fused range and intensity imagery
    Lee, GC
    Stockman, G
    PATTERN RECOGNITION, 1998, 31 (02) : 137 - 158
  • [30] Fusing RGB and depth with Self-attention for Unseen Object Segmentation
    Lee, Joosoon
    Back, Seunghyeok
    Kim, Taewon
    Shin, Sungho
    Noh, Sangjun
    Kang, Raeyoung
    Kim, Jongwon
    Lee, Kyoobin
    2021 21ST INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2021), 2021, : 1599 - 1605