Connecting Pre-trained Language Models and Downstream Tasks via Properties of Representations

被引:0
|
作者
Wu, Chenwei [1 ]
Lee, Holden [2 ]
Ge, Rong [1 ]
机构
[1] Duke Univ, Durham, NC 27706 USA
[2] Johns Hopkins Univ, Baltimore, MD USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, researchers have found that representations learned by large-scale pre-trained language models are useful in various downstream tasks. However, there is little theoretical understanding of how pre-training performance is related to downstream task performance. In this paper, we analyze how this performance transfer depends on the properties of the downstream task and the structure of the representations. We consider a log-linear model where a word can be predicted from its context through a network having softmax as its last layer. We show that even if the downstream task is highly structured and depends on a simple function of the hidden representation, there are still cases when a low pre-training loss cannot guarantee good performance on the downstream task. On the other hand, we propose and empirically validate the existence of an "anchor vector" in the representation space, and show that this assumption, together with properties of the downstream task, guarantees performance transfer.
引用
下载
收藏
页数:23
相关论文
共 50 条
  • [21] Pre-trained language models in medicine: A survey *
    Luo, Xudong
    Deng, Zhiqi
    Yang, Binxia
    Luo, Michael Y.
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 154
  • [22] A Comparison of SVM Against Pre-trained Language Models (PLMs) for Text Classification Tasks
    Wahba, Yasmen
    Madhavji, Nazim
    Steinbacher, John
    MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE, LOD 2022, PT II, 2023, 13811 : 304 - 313
  • [23] Aspect Based Sentiment Analysis by Pre-trained Language Representations
    Liang Tianxin
    Yang Xiaoping
    Zhou Xibo
    Wang Bingqian
    2019 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2019), 2019, : 1262 - 1265
  • [24] A Study of Pre-trained Language Models in Natural Language Processing
    Duan, Jiajia
    Zhao, Hui
    Zhou, Qian
    Qiu, Meikang
    Liu, Meiqin
    2020 IEEE INTERNATIONAL CONFERENCE ON SMART CLOUD (SMARTCLOUD 2020), 2020, : 116 - 121
  • [25] Controllable Generation from Pre-trained Language Models via Inverse Prompting
    Zou, Xu
    Yin, Da
    Zhong, Qingyang
    Yang, Hongxia
    Yang, Zhilin
    Tang, Jie
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 2450 - 2460
  • [26] Debiasing Pre-Trained Language Models via Efficient Fine-Tuning
    Gira, Michael
    Zhang, Ruisu
    Lee, Kangwook
    PROCEEDINGS OF THE SECOND WORKSHOP ON LANGUAGE TECHNOLOGY FOR EQUALITY, DIVERSITY AND INCLUSION (LTEDI 2022), 2022, : 59 - 69
  • [27] From Cloze to Comprehension: Retrofitting Pre-trained Masked Language Models to Pre-trained Machine Reader
    Xu, Weiwen
    Li, Xin
    Zhang, Wenxuan
    Zhou, Meng
    Lam, Wai
    Si, Luo
    Bing, Lidong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [28] Pre-trained models for natural language processing: A survey
    Qiu XiPeng
    Sun TianXiang
    Xu YiGe
    Shao YunFan
    Dai Ning
    Huang XuanJing
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2020, 63 (10) : 1872 - 1897
  • [29] Analyzing Individual Neurons in Pre-trained Language Models
    Durrani, Nadir
    Sajjad, Hassan
    Dalvi, Fahim
    Belinkov, Yonatan
    PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 4865 - 4880
  • [30] Emotional Paraphrasing Using Pre-trained Language Models
    Casas, Jacky
    Torche, Samuel
    Daher, Karl
    Mugellini, Elena
    Abou Khaled, Omar
    2021 9TH INTERNATIONAL CONFERENCE ON AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION WORKSHOPS AND DEMOS (ACIIW), 2021,