Revisiting Depth Completion from a Stereo Matching Perspective for Cross-domain Generalization

被引:0
|
作者
Bartolomei, Luca [1 ,2 ]
Poggi, Matteo [1 ,2 ]
Conti, Andrea [2 ]
Tosi, Fabio [2 ]
Mattoccia, Stefano [1 ,2 ]
机构
[1] Adv Res Ctr Elect Syst ARCES, Bologna, Italy
[2] Univ Bologna, Dept Comp Sci & Engn DISI, Bologna, Italy
关键词
D O I
10.1109/3DV62453.2024.00127
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new framework for depth completion robust against domain-shifting issues. It exploits the generalization capability of modern stereo networks to face depth completion, by processing fictitious stereo pairs obtained through a virtual pattern projection paradigm. Any stereo network or traditional stereo matcher can be seamlessly plugged into our framework, allowing for the deployment of a virtual stereo setup that is future-proof against advancement in the stereo field. Exhaustive experiments on cross-domain generalization support our claims. Hence, we argue that our framework can help depth completion to reach new deployment scenarios.
引用
收藏
页码:1360 / 1370
页数:11
相关论文
共 50 条
  • [31] Depth generalization from stereo to motion parallax in the owl
    Robert F. van der Willigen
    Barrie J. Frost
    Hermann Wagner
    [J]. Journal of Comparative Physiology A, 2002, 187 : 997 - 1007
  • [32] Cross-domain Named Entity Recognition via Graph Matching
    Zheng, Junhao
    Chen, Haibin
    Ma, Qianli
    [J]. FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), 2022, : 2670 - 2680
  • [33] A Lightweight Neural Network Framework for Cross-Domain Road Matching
    Zhao, Ye
    Wang, Teng
    [J]. 2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 2973 - 2978
  • [34] Cross-Domain Developer Recommendation Algorithm Based on Feature Matching
    Yu, Xu
    He, Yadong
    Fu, Yu
    Xin, Yu
    Du, Junwei
    Ni, Weijian
    [J]. COMPUTER SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING, CHINESECSCW 2019, 2019, 1042 : 443 - 457
  • [35] Maximum-Margin Coupled Mappings for Cross-Domain Matching
    Siena, Stephen
    Boddeti, Vishnu Naresh
    Kumar, B. V. K. Vijaya
    [J]. 2013 IEEE SIXTH INTERNATIONAL CONFERENCE ON BIOMETRICS: THEORY, APPLICATIONS AND SYSTEMS (BTAS), 2013,
  • [36] Cross-Domain Matching with Squared-Loss Mutual Information
    Yamada, Makoto
    Sigal, Leonid
    Raptis, Michalis
    Toyoda, Machiko
    Chang, Yi
    Sugiyama, Masashi
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (09) : 1764 - 1776
  • [37] On the limits of cross-domain generalization in automated X-ray prediction
    Cohen, Joseph Paul
    Hashir, Mohammad
    Brooks, Rupert
    Bertrand, Hadrien
    [J]. MEDICAL IMAGING WITH DEEP LEARNING, VOL 121, 2020, 121 : 136 - 155
  • [38] Cross-Domain Fault Diagnosis via Meta-Learning-Based Domain Generalization
    Yue, Fengyu
    Wang, Yong
    [J]. 2022 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2022, : 1826 - 1832
  • [39] Discriminative adversarial domain generalization with meta-learning based cross-domain validation
    Chen, Keyu
    Zhuang, Di
    Chang, J. Morris
    [J]. NEUROCOMPUTING, 2022, 467 : 418 - 426
  • [40] Bridge Data: Boosting Generalization of Robotic Skills with Cross-Domain Datasets
    Ebert, Frederik
    Yang, Yanlai
    Schmeckpeper, Karl
    Bucher, Bernadette
    Georgakis, Georgios
    Daniilidis, Kostas
    Finn, Chelsea
    Levine, Sergey
    [J]. ROBOTICS: SCIENCE AND SYSTEM XVIII, 2022,