Revisiting Depth Completion from a Stereo Matching Perspective for Cross-domain Generalization

被引:0
|
作者
Bartolomei, Luca [1 ,2 ]
Poggi, Matteo [1 ,2 ]
Conti, Andrea [2 ]
Tosi, Fabio [2 ]
Mattoccia, Stefano [1 ,2 ]
机构
[1] Adv Res Ctr Elect Syst ARCES, Bologna, Italy
[2] Univ Bologna, Dept Comp Sci & Engn DISI, Bologna, Italy
关键词
D O I
10.1109/3DV62453.2024.00127
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new framework for depth completion robust against domain-shifting issues. It exploits the generalization capability of modern stereo networks to face depth completion, by processing fictitious stereo pairs obtained through a virtual pattern projection paradigm. Any stereo network or traditional stereo matcher can be seamlessly plugged into our framework, allowing for the deployment of a virtual stereo setup that is future-proof against advancement in the stereo field. Exhaustive experiments on cross-domain generalization support our claims. Hence, we argue that our framework can help depth completion to reach new deployment scenarios.
引用
收藏
页码:1360 / 1370
页数:11
相关论文
共 50 条
  • [11] Contrastive Cross-domain Recommendation in Matching
    Xie, Ruobing
    Liu, Qi
    Wang, Liangdong
    Liu, Shukai
    Zhang, Bo
    Lin, Leyu
    [J]. PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 4226 - 4236
  • [12] Cross-Domain Generalization of Neural Constituency Parsers
    Fried, Daniel
    Kitaev, Nikita
    Klein, Dan
    [J]. 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 323 - 330
  • [13] A Theory of Relation Learning and Cross-Domain Generalization
    Doumas, Leonidas A. A.
    Puebla, Guillermo
    Martin, Andrea E.
    Hummel, John E.
    [J]. PSYCHOLOGICAL REVIEW, 2022, 129 (05) : 999 - 1041
  • [14] Ladder Curriculum Learning for Domain Generalization in Cross-Domain Classification
    Wang, Xiaoshun
    Luo, Sibei
    Gao, Yiming
    [J]. IEEE ACCESS, 2024, 12 : 95356 - 95367
  • [15] Stereo sample generation-based domain generalization network for stereo matching
    Xu, Liying
    Zhu, Jie
    Peng, Bo
    Liu, Bingzheng
    Zhang, Zhe
    Lei, Jianjun
    [J]. ELECTRONICS LETTERS, 2024, 60 (12)
  • [16] Revisiting Stereo Depth Estimation From a Sequence-to-Sequence Perspective with Transformers
    Li, Zhaoshuo
    Liu, Xingtong
    Drenkow, Nathan
    Ding, Andy
    Creighton, Francis X.
    Taylor, Russell H.
    Unberath, Mathias
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 6177 - 6186
  • [17] A Cross-Domain Perspective to Clustering with Uncertainty
    Pileggi, Salvatore F.
    [J]. COMPUTATIONAL SCIENCE, ICCS 2024, PT VII, 2024, 14838 : 295 - 308
  • [18] Pairwise Generalization Network for Cross-Domain Image Recognition
    Y. B. Liu
    T. T. Han
    Z. Gao
    [J]. Neural Processing Letters, 2020, 52 : 1023 - 1041
  • [19] Pairwise Generalization Network for Cross-Domain Image Recognition
    Liu, Y. B.
    Han, T. T.
    Gao, Z.
    [J]. NEURAL PROCESSING LETTERS, 2020, 52 (02) : 1023 - 1041
  • [20] CLIP4STEREO: REVISITING DOMAIN GENERALIZED STEREO MATCHING VIA CLIP
    Ma, Chihao
    Zeng, Pengcheng
    Zhai, Jucai
    Liu, Yang
    Zhao, Yong
    Wang, Xinan
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 106 - 110