Revisiting Depth Completion from a Stereo Matching Perspective for Cross-domain Generalization

被引:0
|
作者
Bartolomei, Luca [1 ,2 ]
Poggi, Matteo [1 ,2 ]
Conti, Andrea [2 ]
Tosi, Fabio [2 ]
Mattoccia, Stefano [1 ,2 ]
机构
[1] Adv Res Ctr Elect Syst ARCES, Bologna, Italy
[2] Univ Bologna, Dept Comp Sci & Engn DISI, Bologna, Italy
关键词
D O I
10.1109/3DV62453.2024.00127
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new framework for depth completion robust against domain-shifting issues. It exploits the generalization capability of modern stereo networks to face depth completion, by processing fictitious stereo pairs obtained through a virtual pattern projection paradigm. Any stereo network or traditional stereo matcher can be seamlessly plugged into our framework, allowing for the deployment of a virtual stereo setup that is future-proof against advancement in the stereo field. Exhaustive experiments on cross-domain generalization support our claims. Hence, we argue that our framework can help depth completion to reach new deployment scenarios.
引用
收藏
页码:1360 / 1370
页数:11
相关论文
共 50 条
  • [1] Matching-space Stereo Networks for Cross-domain Generalization
    Cai, Changjiang
    Poggi, Matteo
    Mattoccia, Stefano
    Mordohai, Philippos
    [J]. 2020 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2020), 2020, : 364 - 373
  • [2] Revisiting Domain Generalized Stereo Matching Networks from a Feature Consistency Perspective
    Zhang, Jiawei
    Wang, Xiang
    Bai, Xiao
    Wang, Chen
    Huang, Lei
    Chen, Yimin
    Gu, Lin
    Zhou, Jun
    Harada, Tatsuya
    Hancock, Edwin R.
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 12991 - 13001
  • [3] Learning Monocular Depth by Distilling Cross-Domain Stereo Networks
    Guo, Xiaoyang
    Li, Hongsheng
    Yi, Shuai
    Ren, Jimmy
    Wang, Xiaogang
    [J]. COMPUTER VISION - ECCV 2018, PT XI, 2018, 11215 : 506 - 523
  • [4] Cross-domain Ensemble Distillation for Domain Generalization
    Lee, Kyungmoon
    Kim, Sungyeon
    Kwak, Suha
    [J]. COMPUTER VISION, ECCV 2022, PT XXV, 2022, 13685 : 1 - 20
  • [5] Cross-Domain Gated Learning for Domain Generalization
    Dapeng Du
    Jiawei Chen
    Yuexiang Li
    Kai Ma
    Gangshan Wu
    Yefeng Zheng
    Limin Wang
    [J]. International Journal of Computer Vision, 2022, 130 : 2842 - 2857
  • [6] Cross-Domain Gated Learning for Domain Generalization
    Du, Dapeng
    Chen, Jiawei
    Li, Yuexiang
    Ma, Kai
    Wu, Gangshan
    Zheng, Yefeng
    Wang, Limin
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (11) : 2842 - 2857
  • [7] SA-Net: Scene-Aware Network for Cross-domain Stereo Matching
    Chong, Ai-Xin
    Yin, Hui
    Wan, Jin
    Liu, Yan-Ting
    Du, Qian-Qian
    [J]. APPLIED INTELLIGENCE, 2023, 53 (09) : 9978 - 9991
  • [8] SA-Net: Scene-Aware Network for Cross-domain Stereo Matching
    Ai-Xin Chong
    Hui Yin
    Jin Wan
    Yan-Ting Liu
    Qian-Qian Du
    [J]. Applied Intelligence, 2023, 53 : 9978 - 9991
  • [9] Constrained Maximum Cross-Domain Likelihood for Domain Generalization
    Lin, Jianxin
    Tang, Yongqiang
    Wang, Junping
    Zhang, Wensheng
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, : 1 - 15
  • [10] Domain generalization for cross-domain fault diagnosis: An application-oriented perspective and a benchmark study
    Zhao, Chao
    Zio, Enrico
    Shen, Weiming
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 245