Physics-informed neural networks (P INNs): application categories, trends and impact

被引:1
|
作者
Ghalambaz, Mohammad [1 ]
Sheremet, Mikhail A. [1 ]
Khan, Mohammed Arshad [2 ]
Raizah, Zehba [3 ]
Shafi, Jana [4 ]
机构
[1] Tomsk State Univ, Lab Convect Heat & Mass Transfer, Tomsk, Russia
[2] Saudi Elect Univ, Coll Adm & Financial Sci, Dept Accountancy, Dammam, Saudi Arabia
[3] King Khalid Univ, Coll Sci, Dept Math, Abha, Saudi Arabia
[4] Prince Sattam Bin Abdulaziz Univ, Coll Engn Wadi Alddawasir, Dept Comp Engn & Informat, Al Kharj, Saudi Arabia
关键词
Physics-informed neural networks (PINNs); Application categorizes; Trends and impacts; Geographical distributions; Fluid dynamics and CFD; UNCERTAINTY QUANTIFICATION;
D O I
10.1108/HFF-09-2023-0568
中图分类号
O414.1 [热力学];
学科分类号
摘要
PurposeThis study aims to explore the evolving field of physics-informed neural networks (PINNs) through an analysis of 996 records retrieved from the Web of Science (WoS) database from 2019 to 2022.Design/methodology/approachWoS database was analyzed for PINNs using an inhouse python code. The author's collaborations, most contributing institutes, countries and journals were identified. The trends and application categories were also analyzed.FindingsThe papers were classified into seven key domains: Fluid Dynamics and computational fluid dynamics (CFD); Mechanics and Material Science; Electromagnetism and Wave Propagation; Biomedical Engineering and Biophysics; Quantum Mechanics and Physics; Renewable Energy and Power Systems; and Astrophysics and Cosmology. Fluid Dynamics and CFD emerged as the primary focus, accounting for 69.3% of total publications and witnessing exponential growth from 22 papers in 2019 to 366 in 2022. Mechanics and Material Science followed, with an impressive growth trajectory from 3 to 65 papers within the same period. The study also underscored the rising interest in PINNs across diverse fields such as Biomedical Engineering and Biophysics, and Renewable Energy and Power Systems. Furthermore, the focus of the most active countries within each application category was examined, revealing, for instance, the USA's significant contribution to Fluid Dynamics and CFD with 319 papers and to Mechanics and Material Science with 66 papers.Originality/valueThis analysis illuminates the rapidly expanding role of PINNs in tackling complex scientific problems and highlights its potential for future research across diverse domains.
引用
收藏
页码:3131 / 3165
页数:35
相关论文
共 50 条
  • [41] Δ-PINNs: Physics-informed neural networks on complex geometries
    Costabal, Francisco Sahli
    Pezzuto, Simone
    Perdikaris, Paris
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [42] Physics-Informed Neural Networks with Group Contribution Methods
    Babaei, Mohammad Reza
    Stone, Ryan
    Knotts, Thomas Allen
    Hedengren, John
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (13) : 4163 - 4171
  • [43] Adversarial uncertainty quantification in physics-informed neural networks
    Yang, Yibo
    Perdikaris, Paris
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 394 : 136 - 152
  • [44] Multifidelity modeling for Physics-Informed Neural Networks (PINNs)
    Penwarden, Michael
    Zhe, Shandian
    Narayan, Akil
    Kirby, Robert M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 451
  • [45] Respecting causality for training physics-informed neural networks
    Wang, Sifan
    Sankaran, Shyam
    Perdikaris, Paris
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 421
  • [46] Loss-attentional physics-informed neural networks
    Song, Yanjie
    Wang, He
    Yang, He
    Taccari, Maria Luisa
    Chen, Xiaohui
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 501
  • [47] Sensitivity analysis using Physics-informed neural networks
    Hanna, John M.
    Aguado, Jose, V
    Comas-Cardona, Sebastien
    Askri, Ramzi
    Borzacchiello, Domenico
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 135
  • [48] iPINNs: incremental learning for Physics-informed neural networks
    Dekhovich, Aleksandr
    Sluiter, Marcel H. F.
    Tax, David M. J.
    Bessa, Miguel A.
    ENGINEERING WITH COMPUTERS, 2025, 41 (01) : 389 - 402
  • [49] Physics-informed neural networks for spherical indentation problems
    Marimuthu, Karuppasamy Pandian
    Lee, Hyungyil
    MATERIALS & DESIGN, 2023, 236
  • [50] Physics-Informed Neural Networks for Inverse Electromagnetic Problems
    Baldan, Marco
    Di Barba, Paolo
    Lowther, David A.
    IEEE TRANSACTIONS ON MAGNETICS, 2023, 59 (05)