Experimental analysis of low-velocity impact behaviour on flax-balsa biobased sandwich

被引:0
|
作者
Jendli, Zouhaier [1 ]
Haggui, Mondher [1 ,2 ,3 ]
Monti, Arthur [3 ]
El Mahi, Abderrahim [3 ]
Guillaumat, Laurent [4 ]
机构
[1] ESTACA, ESTACA Lab Laval, F-53000 Laval, France
[2] Univ Sfax, Natl Sch Engineers Sfax, Lab Mech Modeling & Prod LA2MP, BP N 1173, Sfax 3038, Tunisia
[3] Maine Univ, Acoust Lab Maine Univ LAUM, UMR CNRS 6613, Av O Messiaen, F-72085 Le Mans 9, France
[4] Arts & Metiers ParisTech, Lab Angevin Mecan Procedes & innovAt LAMPA, F-49100 Angers, France
来源
关键词
Low-velocity impact; Biobased; Sandwich; Flax fibre; Damage; Balsa; COMPOSITES; PANELS; RESISTANCE; BAMBOO; STRENGTH; DAMAGE; SKINS;
D O I
10.1016/j.jcomc.2024.100489
中图分类号
TB33 [复合材料];
学科分类号
摘要
This article deals with a detailed experimental study dedicated to the evaluation of the overall mechanical behaviour of a bio-based composite structure used in transportation industries. The sandwich structure is designed to increase the lightening, vibration damping, and composite recyclability. The considered materials consist of a Flax/Elium (R) laminate composite for skins associated with a balsa core. The sandwich structure was obtained using a one-shot liquid resin infusion process. Low-velocity impact tests were carried out on different sandwich configurations with the aim of characterizing the effects of the stacking sequence and the density and thickness of the core. Furthermore, an experimental comparative analysis was conducted involving two composite laminate types: Glass/Elium and Flax/Elium to enhance the specific behaviour of flax fibre composite to be used as skins in the sandwich structures. The impact tests were carried out at low velocities and at different levels of impact energy using a drop-weight test bench. Notable damage mechanisms have been identified, and a chronological sequence of their development has been suggested. Ultrasonic analyses using C-Scan imaging were applied to the opposite side of the impacted specimen. The research proves the efficient energy-absorbing capability of the biobased sandwich structure during impact. Finally, this study enables a deeper understanding of various parameters that influence the behaviour of sandwiches during low-velocity impacts, thereby facilitating more informed material selection for practical applications.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [41] The effect of low-velocity impact on the fatigue life of Sandwich composites
    Freeman, B
    Schwingler, E
    Mahinfalah, M
    Kellogg, K
    COMPOSITE STRUCTURES, 2005, 70 (03) : 374 - 381
  • [42] Numerical simulations of low-velocity impact on an aircraft sandwich panel
    Meo, M
    Morris, A
    Vignjevic, R
    Marengo, G
    COMPOSITE STRUCTURES, 2003, 62 (3-4) : 353 - 360
  • [43] Low-velocity impact behavior of hollow core woven sandwich composite: Experimental and numerical study
    Hosseini, Seyyed Ahmad
    Sadighi, Mojtaba
    Moghadam, Reza Maleki
    JOURNAL OF COMPOSITE MATERIALS, 2015, 49 (26) : 3285 - 3295
  • [44] Experimental and numerical study on the low-velocity impact behavior of foam-core sandwich panels
    Wang, Jie
    Waas, Anthony M.
    Wang, Hai
    COMPOSITE STRUCTURES, 2013, 96 : 298 - 311
  • [45] Experimental and numerical investigation on low-velocity impact response of sandwich structure with functionally graded core
    Kumar, T. S. Mohan
    Joladarashi, Sharnappa
    Kulkarni, S. M.
    Doddamani, Saleemsab
    POLYMER COMPOSITES, 2024, 45 (04) : 3225 - 3242
  • [46] Experimental and numerical study of low-velocity impact damage in sandwich panel with UHMWPE composite facings
    Yang, Bin
    Zhou, Qi
    Lee, Juhyeong
    Li, Yan
    Fu, Kunkun
    Yang, Dongmin
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2023, 284
  • [47] Experimental, analytical, and numerical studies of composite sandwich panels under low-velocity impact loadings
    M. M. Shokrieh
    M. N. Fakhar
    Mechanics of Composite Materials, 2012, 47 : 643 - 658
  • [48] Experimental and numerical investigation on damage behavior of honeycomb sandwich panel subjected to low-velocity impact
    Zhang, Xiaoyu
    Xu, Fei
    Zang, Yuyan
    Feng, Wei
    COMPOSITE STRUCTURES, 2020, 236
  • [49] Experimental and numerical investigation of lattice core sandwich beams under low-velocity bending impact
    Taghipoor, Hossein
    Nouri, Mohammad Damghani
    JOURNAL OF SANDWICH STRUCTURES & MATERIALS, 2019, 21 (06) : 2154 - 2177
  • [50] Experimental and numerical assessment of sustainable bamboo core sandwich panels under low-velocity impact
    de Oliveira, Livia Avila
    Passaia Tonatto, Maikson Luiz
    Cota Coura, Gabriela Luiza
    Santos Freire, Rodrigo Teixeira
    Panzera, Tulio Hallak
    Scarpa, Fabrizio
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 292