Experimental analysis of low-velocity impact behaviour on flax-balsa biobased sandwich

被引:0
|
作者
Jendli, Zouhaier [1 ]
Haggui, Mondher [1 ,2 ,3 ]
Monti, Arthur [3 ]
El Mahi, Abderrahim [3 ]
Guillaumat, Laurent [4 ]
机构
[1] ESTACA, ESTACA Lab Laval, F-53000 Laval, France
[2] Univ Sfax, Natl Sch Engineers Sfax, Lab Mech Modeling & Prod LA2MP, BP N 1173, Sfax 3038, Tunisia
[3] Maine Univ, Acoust Lab Maine Univ LAUM, UMR CNRS 6613, Av O Messiaen, F-72085 Le Mans 9, France
[4] Arts & Metiers ParisTech, Lab Angevin Mecan Procedes & innovAt LAMPA, F-49100 Angers, France
来源
关键词
Low-velocity impact; Biobased; Sandwich; Flax fibre; Damage; Balsa; COMPOSITES; PANELS; RESISTANCE; BAMBOO; STRENGTH; DAMAGE; SKINS;
D O I
10.1016/j.jcomc.2024.100489
中图分类号
TB33 [复合材料];
学科分类号
摘要
This article deals with a detailed experimental study dedicated to the evaluation of the overall mechanical behaviour of a bio-based composite structure used in transportation industries. The sandwich structure is designed to increase the lightening, vibration damping, and composite recyclability. The considered materials consist of a Flax/Elium (R) laminate composite for skins associated with a balsa core. The sandwich structure was obtained using a one-shot liquid resin infusion process. Low-velocity impact tests were carried out on different sandwich configurations with the aim of characterizing the effects of the stacking sequence and the density and thickness of the core. Furthermore, an experimental comparative analysis was conducted involving two composite laminate types: Glass/Elium and Flax/Elium to enhance the specific behaviour of flax fibre composite to be used as skins in the sandwich structures. The impact tests were carried out at low velocities and at different levels of impact energy using a drop-weight test bench. Notable damage mechanisms have been identified, and a chronological sequence of their development has been suggested. Ultrasonic analyses using C-Scan imaging were applied to the opposite side of the impacted specimen. The research proves the efficient energy-absorbing capability of the biobased sandwich structure during impact. Finally, this study enables a deeper understanding of various parameters that influence the behaviour of sandwiches during low-velocity impacts, thereby facilitating more informed material selection for practical applications.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [31] Experimental and Numerical Study of Composite Honeycomb Sandwich Structures Under Low-Velocity Impact
    Deng, Yunfei
    Hu, Xiaoyu
    Niu, Yijie
    Zheng, Yimei
    Wei, Gang
    APPLIED COMPOSITE MATERIALS, 2024, 31 (02) : 535 - 559
  • [32] Experimental Study on Low-Velocity Impact Performance of GFRP Trapezoidal Corrugated Sandwich Structures
    Deng, Yunfei
    Deng, Yao
    Liu, Wenquan
    Zhang, Shitong
    Tian, Kuo
    JOURNAL OF COMPOSITES SCIENCE, 2023, 7 (07):
  • [33] Analysis of factors influencing deflection in sandwich panels subjected to low-velocity impact
    Mathivanan, N. Rajesh
    Jerald, J.
    Behera, Puspita
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2011, 52 (5-8): : 433 - 441
  • [34] Analysis of factors influencing deflection in sandwich panels subjected to low-velocity impact
    N. Rajesh Mathivanan
    J. Jerald
    Puspita Behera
    The International Journal of Advanced Manufacturing Technology, 2011, 52 : 433 - 441
  • [35] Experimental and numerical analysis of low-velocity impact of plastic laminates
    Ramakrishnan, K. R.
    Shankar, K.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2013, 36 (11) : 1153 - 1163
  • [36] Low-velocity impact behaviour of biocomposite laminates reinforced by flax, basalt and hybrid fibres at various temperatures: Analytical, numerical and experimental results
    Giammaria, Valentina
    Boria, Simonetta
    Sarasini, Fabrizio
    Tirillo, Jacopo
    Cognigni, Flavio
    Rossi, Marco
    Fischer, Balthasar
    Poernbacher, Josef
    COMPOSITE STRUCTURES, 2023, 322
  • [37] Low-velocity impact response and post-impact flexural behaviour of composite sandwich structures with corrugated cores
    He, Wentao
    Liu, Jingxi
    Wang, Shuqing
    Xie, De
    COMPOSITE STRUCTURES, 2018, 189 : 37 - 53
  • [38] Low-velocity impact damage monitoring of a sandwich composite wing
    Liu, Yingtao
    Chattopadhyay, Aditi
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2013, 24 (17) : 2074 - 2083
  • [39] Effect of adhesive in sandwich panels subjected to low-velocity impact
    Zhu, S.
    Chai, G. B.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS, 2011, 225 (L3) : 171 - 181
  • [40] Low-velocity impact failure of aluminium honeycomb sandwich panels
    Foo, C. C.
    Seah, L. K.
    Chai, G. B.
    COMPOSITE STRUCTURES, 2008, 85 (01) : 20 - 28