Magnetisation Reconstruction for Quantum Metrology

被引:0
|
作者
Tehlan, Kartikay [1 ,2 ]
Bissolo, Michele [3 ]
Silvioli, Riccardo [3 ]
Oberreuter, Johannes [1 ,4 ]
Stier, Andreas [3 ]
Navab, Nassir [1 ]
Wendler, Thomas [1 ,2 ]
机构
[1] Tech Univ Munich, Sch Computat Informat & Technol, Chair Comp Aided Med Procedures & Augmented Rea, Garching, Germany
[2] Univ Hosp Augsburg, Dept Intervent & Diagnost Radiol & Neuroradiol, Clin Computat Med Imaging Res, Augsburg, Germany
[3] Tech Univ Munich, Walter Schottky Inst, Garching, Germany
[4] Tech Univ Munich, Sch Nat Sci, Garching, Germany
关键词
D O I
10.1007/978-3-658-44037-4_50
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Widefield nitrogen-vacancy (NV) magnetometry presents a promising method for the detection of cancer biomarkers, offering a new frontier in medical diagnostics. The challenge lies in the inverse problem of accurately reconstructing magnetisation sources from magnetic field measurements, a task complicated by the noise sensitivity of the data, and the ill-posed nature of the inverse problem. To address this, we employed a physics informed neural network (PINN) on 2D magnetic materials, combining the strengths of convolutional neural networks (CNN) with underlying physical laws of magnetism. The physics informed loss during the training of the neural network constrains the parameter space to physically plausible reconstructions. The physics-constraining results in improved accuracy and noise robustness. This paves the way for understanding the requirements for the development of such models for quantum sensing in biomedicine.
引用
收藏
页码:166 / 171
页数:6
相关论文
共 50 条
  • [31] Development on quantum metrology with quantum Fisher information
    Ren Zhi-Hong
    Li Yan
    Li Yan-Na
    Li Wei-Dong
    ACTA PHYSICA SINICA, 2019, 68 (04)
  • [32] Quantum Fisher information width in quantum metrology
    Bo Liu
    GuoLong Li
    YanMing Che
    Jie Chen
    XiaoGuang Wang
    Science China Physics, Mechanics & Astronomy, 2019, 62
  • [33] Quantum metrology with full and fast quantum control
    Sekatski, Pavel
    Skotiniotis, Michalis
    Kolodynski, Jan
    Duer, Wolfgang
    QUANTUM, 2017, 1
  • [34] Quantum metrology with quantum-chaotic sensors
    Lukas J. Fiderer
    Daniel Braun
    Nature Communications, 9
  • [35] Quantum metrology with delegated tasks
    Shettell, Nathan
    Markham, Damian
    PHYSICAL REVIEW A, 2022, 106 (05)
  • [36] Quantum metrology with entangled photons
    Sergienko, AV
    RECENT ADVANCES IN METROLOGY AND FUNDAMENTAL CONSTANTS, 2001, 146 : 715 - 746
  • [37] Estimation of gradients in quantum metrology
    Altenburg, Sanah
    Oszmaniec, Michal
    Wolk, Sabine
    Guhne, Otfried
    PHYSICAL REVIEW A, 2017, 96 (04)
  • [38] Quantum metrology in correlated environments
    Xie, Dong
    Wang, An Min
    PHYSICS LETTERS A, 2014, 378 (30-31) : 2079 - 2084
  • [39] Quantum metrology with imperfect measurements
    Len, Yink Loong
    Gefen, Tuvia
    Retzker, Alex
    Kolodynski, Jan
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [40] Quantum-dense metrology
    Steinlechner, Sebastian
    Bauchrowitz, Joeran
    Meinders, Melanie
    Mueller-Ebhardt, Helge
    Danzmann, Karsten
    Schnabel, Roman
    NATURE PHOTONICS, 2013, 7 (08) : 626 - 629