Magnetisation Reconstruction for Quantum Metrology

被引:0
|
作者
Tehlan, Kartikay [1 ,2 ]
Bissolo, Michele [3 ]
Silvioli, Riccardo [3 ]
Oberreuter, Johannes [1 ,4 ]
Stier, Andreas [3 ]
Navab, Nassir [1 ]
Wendler, Thomas [1 ,2 ]
机构
[1] Tech Univ Munich, Sch Computat Informat & Technol, Chair Comp Aided Med Procedures & Augmented Rea, Garching, Germany
[2] Univ Hosp Augsburg, Dept Intervent & Diagnost Radiol & Neuroradiol, Clin Computat Med Imaging Res, Augsburg, Germany
[3] Tech Univ Munich, Walter Schottky Inst, Garching, Germany
[4] Tech Univ Munich, Sch Nat Sci, Garching, Germany
关键词
D O I
10.1007/978-3-658-44037-4_50
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Widefield nitrogen-vacancy (NV) magnetometry presents a promising method for the detection of cancer biomarkers, offering a new frontier in medical diagnostics. The challenge lies in the inverse problem of accurately reconstructing magnetisation sources from magnetic field measurements, a task complicated by the noise sensitivity of the data, and the ill-posed nature of the inverse problem. To address this, we employed a physics informed neural network (PINN) on 2D magnetic materials, combining the strengths of convolutional neural networks (CNN) with underlying physical laws of magnetism. The physics informed loss during the training of the neural network constrains the parameter space to physically plausible reconstructions. The physics-constraining results in improved accuracy and noise robustness. This paves the way for understanding the requirements for the development of such models for quantum sensing in biomedicine.
引用
收藏
页码:166 / 171
页数:6
相关论文
共 50 条
  • [1] Quantum metrology
    Giovannetti, V
    Lloyd, S
    Maccone, L
    PHYSICAL REVIEW LETTERS, 2006, 96 (01)
  • [2] Quantum metrology
    项国勇
    郭光灿
    Chinese Physics B, 2013, 22 (11) : 95 - 104
  • [3] Quantum metrology
    Xiang Guo-Yong
    Guo Guang-Can
    CHINESE PHYSICS B, 2013, 22 (11)
  • [4] Quantum relaxation of magnetisation in magnetic particles
    Prokofev, NV
    Stamp, PCE
    JOURNAL OF LOW TEMPERATURE PHYSICS, 1996, 104 (3-4) : 143 - 209
  • [5] Metrology for Quantum Communication
    Piacentini, F.
    Adenier, G.
    Traina, P.
    Avella, A.
    Brida, G.
    Degiovanni, I. P.
    Gramegna, M.
    Berchera, I. Ruo
    Genovese, M.
    2015 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2015,
  • [6] Cryptographic quantum metrology
    Huang, Zixin
    Macchiavello, Chiara
    Maccone, Lorenzo
    PHYSICAL REVIEW A, 2019, 99 (02)
  • [7] Quantum Critical Metrology
    Frerot, Irenee
    Roscilde, Tommaso
    PHYSICAL REVIEW LETTERS, 2018, 121 (02)
  • [8] Photonic quantum metrology
    Polino, Emanuele
    Valeri, Mauro
    Spagnolo, Nicolo
    Sciarrino, Fabio
    AVS QUANTUM SCIENCE, 2020, 2 (02):
  • [9] Quantum imaging and metrology
    Lee, H
    Kok, P
    Dowling, JP
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, PROCEEDINGS, 2003, : 223 - 228
  • [10] Optical Quantum Metrology
    Barbieri, Marco
    PRX QUANTUM, 2022, 3 (01):