Polymer-mediated vacancy defects of graphene sheets as high-performance cathode materials for aqueous zinc-ion hybrid supercapacitors

被引:0
|
作者
Zhang, Ran [1 ]
Song, Ming [1 ]
Zhu, Xingqun [1 ]
Pan, Likun [2 ]
机构
[1] Xuzhou Univ Technol, Sch Mat & Chem Engn, Xuzhou 221018, Peoples R China
[2] East China Normal Univ, Sch Phys & Elect Sci, Shanghai Key Lab Magnet Resonance, Shanghai 200241, Peoples R China
关键词
Vacancy defects; Zn ion hybrid supercapacitors; Graphene oxide; Carbon nanofibers;
D O I
10.1016/j.apsusc.2024.159933
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrochemical behavior of graphene sheets in energy storage system is closely related to its electronic structures. Specifically, structural vacancy defects can expose more active sites and enhance the electrochemical performance. However, it is still a challenging problem to realize valid defect regulation on improving the reaction kinetics of electrode materials. Herein, vacancy-defective graphene sheets were constructed through the thermal mediated method via intercalation of polyacrylonitrile nanofibers. The vacancy defects were generated from the NH3 gas resulting from polymer decomposition at gradient carbonization temperature. The obtained composites of the graphene sheets and carbon nanofibers demonstrate that the vacancy defects benefit to charge transport, allowing more electrons to pass through the interlayered structure, and enhance the adsorption capacitance during the reversible electrochemical process. In addition, the as-assembled Zn ion hybrid supercapacitors exhibit a high energy density of 129.9 Wh kg- 1 and outstanding cyclic stability (99.8 % after 10,000 cycling). The confined polymer-mediated thermal modification strategy can afford abundant vacancy defective sites and exhibit promising outlook for constructing high-performance graphene-based electrode materials for Zn ion hybrid supercapacitors.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Manganese oxides hierarchical microspheres as cathode material for high-performance aqueous zinc-ion batteries
    Yang, Bo
    Cao, Xianwen
    Wang, Shenghan
    Wang, Ning
    Sun, Chenglin
    ELECTROCHIMICA ACTA, 2021, 385 (385)
  • [42] Unlocking Layered Double Hydroxide as a High-Performance Cathode Material for Aqueous Zinc-Ion Batteries
    Zhao, Yajun
    Zhang, Pengjun
    Liang, Jinrui
    Xia, Xiaoyu
    Ren, Longtao
    Song, Li
    Liu, Wen
    Sun, Xiaoming
    ADVANCED MATERIALS, 2022, 34 (37)
  • [43] Ferroelectric-Enhanced cathode kinetics toward High-Performance aqueous Zinc-Ion batteries
    Li, Yue
    Cui, Xiaosha
    Yan, Jianfeng
    Zhang, Yaxiong
    Xie, Erqing
    Fu, Jiecai
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 650 : 1605 - 1611
  • [44] Advances in application of sustainable lignocellulosic materials for high-performance aqueous zinc-ion batteries
    Huang, Yi
    Liu, Wei
    Lin, Chenxiao
    Hou, Qingxi
    Nie, Shuangxi
    NANO ENERGY, 2024, 123
  • [45] Rational design of integrated high-performance flexible zinc-ion hybrid supercapacitors based on electroactive biomass regulated graphene oxide
    Liu, Zhengwei
    Xue, Tao
    Liu, Qifan
    Qin, Feng
    He, Minhua
    Yang, Chao
    Zang, Limin
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2024, 35 (08)
  • [46] Rational design of integrated high-performance flexible zinc-ion hybrid supercapacitors based on electroactive biomass regulated graphene oxide
    Zhengwei Liu
    Tao Xue
    Qifan Liu
    Feng Qin
    Minhua He
    Chao Yang
    Limin Zang
    Journal of Materials Science: Materials in Electronics, 2024, 35
  • [47] Porous carbon derived from a by-product of traditional Chinese medicine for high-performance aqueous zinc-ion hybrid supercapacitors
    Song, Bingjing
    Liu, Qifan
    Shi, Fangfang
    Xue, Tao
    Yang, Chao
    Zang, Limin
    DIAMOND AND RELATED MATERIALS, 2024, 142
  • [48] High-performance aqueous zinc-ion hybrid micro-supercapacitors enabled by oxygen-rich functionalised MXene nanofibres
    Feng, Yamin
    Liu, Weifeng
    Bai, Haineng
    Zhang, Yan
    Du, Yunxiao
    Liu, Yongqiang
    Zhang, Long
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 682 : 1085 - 1093
  • [49] Advanced electrolytes for high-performance aqueous zinc-ion batteries
    Wei, Jie
    Zhang, Pengbo
    Sun, Jingjie
    Liu, Yuzhu
    Li, Fajun
    Xu, Haifeng
    Ye, Ruquan
    Tie, Zuoxiu
    Sun, Lin
    Jin, Zhong
    CHEMICAL SOCIETY REVIEWS, 2024, 53 (20) : 10335 - 10369
  • [50] Ultralong-Life Quinone-Based Porous Organic Polymer Cathode for High-Performance Aqueous Zinc-Ion Batteries
    Buyukcakir, Onur
    Yuksel, Recep
    Begar, Ferit
    Erdogmus, Mustafa
    Arsakay, Madi
    Lee, Sun Hwa
    Kim, Sang Ouk
    Ruoff, Rodney S. S.
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (14) : 7672 - 7680