Polymer-mediated vacancy defects of graphene sheets as high-performance cathode materials for aqueous zinc-ion hybrid supercapacitors

被引:0
|
作者
Zhang, Ran [1 ]
Song, Ming [1 ]
Zhu, Xingqun [1 ]
Pan, Likun [2 ]
机构
[1] Xuzhou Univ Technol, Sch Mat & Chem Engn, Xuzhou 221018, Peoples R China
[2] East China Normal Univ, Sch Phys & Elect Sci, Shanghai Key Lab Magnet Resonance, Shanghai 200241, Peoples R China
关键词
Vacancy defects; Zn ion hybrid supercapacitors; Graphene oxide; Carbon nanofibers;
D O I
10.1016/j.apsusc.2024.159933
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrochemical behavior of graphene sheets in energy storage system is closely related to its electronic structures. Specifically, structural vacancy defects can expose more active sites and enhance the electrochemical performance. However, it is still a challenging problem to realize valid defect regulation on improving the reaction kinetics of electrode materials. Herein, vacancy-defective graphene sheets were constructed through the thermal mediated method via intercalation of polyacrylonitrile nanofibers. The vacancy defects were generated from the NH3 gas resulting from polymer decomposition at gradient carbonization temperature. The obtained composites of the graphene sheets and carbon nanofibers demonstrate that the vacancy defects benefit to charge transport, allowing more electrons to pass through the interlayered structure, and enhance the adsorption capacitance during the reversible electrochemical process. In addition, the as-assembled Zn ion hybrid supercapacitors exhibit a high energy density of 129.9 Wh kg- 1 and outstanding cyclic stability (99.8 % after 10,000 cycling). The confined polymer-mediated thermal modification strategy can afford abundant vacancy defective sites and exhibit promising outlook for constructing high-performance graphene-based electrode materials for Zn ion hybrid supercapacitors.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Optimization Strategy of Molecular Modified Graphene Films for High-Performance Aqueous Zinc-Ion Hybrid Supercapacitors
    Peng, Long
    Liu, Zhixiong
    Liu, Zhicheng
    Huang, Junlin
    Wang, Wei
    Yin, Hong
    He, Binhong
    Zhu, Yucan
    Hou, Zhaohui
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 949
  • [2] Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors
    Ma, Xinpei
    Cheng, Junye
    Dong, Liubing
    Liu, Wenbao
    Mou, Jian
    Zhao, Ling
    Wang, Jinjie
    Ren, Danyang
    Wu, Junlin
    Xu, Chengjun
    Kang, Feiyu
    ENERGY STORAGE MATERIALS, 2019, 20 : 335 - 342
  • [3] Coupling effect of vacancy defects and multi-adsorption sites in porous carbon cathode for high-performance aqueous zinc-ion hybrid capacitors
    Li, Heng-Xiang
    Shi, Wen-Jing
    Liu, Ling-Yang
    Zhang, Xiaohua
    Zhang, Peng-Fang
    Wang, Qun
    Liu, Ying
    Wang, Zhao-Yang
    Dou, Jianmin
    CHEMICAL ENGINEERING JOURNAL, 2024, 487
  • [4] Hybrid Anionic Electrolytes for the High Performance of Aqueous Zinc-Ion Hybrid Supercapacitors
    Xie, Bin
    He, Junjie
    Sun, Yuchen
    Li, Senlin
    Li, Jing
    ENERGIES, 2023, 16 (01)
  • [5] Rationally designed anode and gel polymer electrolyte for high-performance zinc-ion hybrid supercapacitors
    Zhang, Jijian
    Wang, Jingjing
    Zuo, Danying
    Xu, Jing
    Li, Hongjun
    Zhang, Hongwei
    JOURNAL OF POWER SOURCES, 2023, 581
  • [6] Zn-doped manganese tetroxide/graphene oxide cathode materials for high-performance aqueous zinc-ion battery
    Ge, Linheng
    Zhang, Hong
    Wang, Zirui
    Gao, Qingli
    Ren, Manman
    Cai, Xiaoxia
    Liu, Qinze
    Liu, Weiliang
    Yao, Jinshui
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2024, 112 (01) : 15 - 24
  • [7] Proton-insertion dominated polymer cathode for high-performance aqueous zinc-ion battery
    Sun, Tianjiang
    Zhang, Weijia
    Nian, Qingshun
    Tao, Zhanliang
    CHEMICAL ENGINEERING JOURNAL, 2023, 452
  • [8] Recent Progress on High-Performance Cathode Materials for Zinc-Ion Batteries
    Zhang, Maiwen
    Liang, Ruilin
    Or, Tyler
    Deng, Ya-Ping
    Yu, Aiping
    Chen, Zhongwei
    SMALL STRUCTURES, 2021, 2 (02):
  • [9] Elucidating the charge storage mechanism of high-performance vertical graphene cathodes for zinc-ion hybrid supercapacitors
    Li, Xu
    Li, Yang
    Zhao, Xin
    Kang, Feiyu
    Dong, Liubing
    ENERGY STORAGE MATERIALS, 2022, 53 : 505 - 513
  • [10] Constructing graphene conductive networks in manganese vanadate as high-performance cathode for aqueous zinc-ion batteries
    Liu, Hongwei
    Wang, Nengze
    Hu, Lei
    Sun, Mengxuan
    Li, Zhijie
    Jia, Chunyang
    ELECTROCHIMICA ACTA, 2023, 441