Preparation and Performance Evaluation of a Miniature High-Temperature Heat Flux Sensor With Centralized Thermal Insulation Structure

被引:0
|
作者
Li, Xiaofen [1 ,2 ]
Zhang, Lei [1 ,2 ]
Xie, Hao [1 ,2 ]
Shang, Ze [1 ,2 ]
Zhang, Xiangxiang [1 ,2 ]
Qi, Xue [1 ,2 ]
Lu, Meimei [1 ,2 ]
Tan, Qiulin [1 ,2 ]
机构
[1] North Univ China, Sci & Technol Elect Test & Measurement Lab, Taiyuan 030051, Peoples R China
[2] North Univ China, State Key Lab Dynam Measurement Technol, Taiyuan 030051, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermal resistance; Heating systems; Hafnium; Junctions; Temperature measurement; Thermocouples; Surface resistance; Heat flux sensor (HFS); high-temperature environment; miniaturization; screen printing; thermopiles;
D O I
10.1109/TIM.2024.3420362
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The internal hot-end components of aeroengines operate in a high-temperature environment are susceptible to cracks or falling blocks due to thermal fatigue and other effects. The rapid changes in heat flux at these defects can lead to engine failure. We propose a miniaturized sensor capable of monitoring heat flux change in a high-temperature environment. The sensor is based on a thermopile, connected in series with the platinum-10% rhodium/platinum (Pt-Rh10/Pt) thermocouples as the basic unit on a ceramic plate sized 10 x 10 x 1 mm(3). Nanocomposite silicon dioxide is adopted as a thermal insulation material to generate a temperature difference at the hot and cold junctions, which is distributed in the center and results in a thermal voltage output in the millivolt range. The heat flux sensor (HFS) can operate at temperatures up to 1000 degrees C with a good repeatability. The output voltage at a heat flux of 189.6 kW/m2 is 0.4113 mV, and the dynamic response time of HFS is 0.25 s. The screen printing process enables the batch preparation of micro-HFSs for high-temperature device surfaces with small areas.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Active Thermal Insulation for High-Temperature Chemical Plant
    Yu. L. Lyubina
    A. L. Suris
    Chemical and Petroleum Engineering, 2002, 38 : 111 - 117
  • [32] High-temperature thermal-insulation Tizolit articles
    V. N. Khabarov
    A. V. Zuev
    Refractories and Industrial Ceramics, 2010, 51 : 79 - 82
  • [33] RECENT RESEARCH ON THERMAL INSULATION FOR HIGH-TEMPERATURE REACTORS
    LECOURT, Y
    JOURNAL OF THE BRITISH NUCLEAR ENERGY SOCIETY, 1969, 8 (01): : 25 - &
  • [34] Aerogel Product Applications for High-Temperature Thermal Insulation
    Fedyukhin, Alexander, V
    Strogonov, Konstantin, V
    Soloveva, Olga, V
    Solovev, Sergei A.
    Akhmetova, Irina G.
    Berardi, Umberto
    Zaitsev, Mark D.
    Grigorev, Daniil, V
    ENERGIES, 2022, 15 (20)
  • [36] HIGH-TEMPERATURE SCREEN-VACUUM THERMAL INSULATION
    KISELEV, GA
    KUTS, SM
    SHAPKIN, VE
    HIGH TEMPERATURE, 1976, 14 (03) : 598 - 601
  • [37] Miniature Photonic Crystal Fiber Sensor for High-Temperature Measurement
    Ding, Wen-Hui
    Jiang, Yi
    IEEE SENSORS JOURNAL, 2014, 14 (03) : 786 - 789
  • [38] Study of Structural and Technological Properties of Expanded Vermiculite During Preparation of High-Temperature Heat Insulation
    M. Kh. Rumi
    E. M. Urazaeva
    Sh. R. Nurmatov
    Sh. K. Irmatova
    M. A. Zufarov
    Sh. A. Faiziev
    E. P. Mansurova
    Refractories and Industrial Ceramics, 2022, 63 : 283 - 290
  • [39] Study of Structural and Technological Properties of Expanded Vermiculite During Preparation of High-Temperature Heat Insulation
    Rumi, M. Kh.
    Urazaeva, E. M.
    Nurmatov, Sh. R.
    Irmatova, Sh. K.
    Zufarov, M. A.
    Faiziev, Sh. A.
    Mansurova, E. P.
    REFRACTORIES AND INDUSTRIAL CERAMICS, 2022, 63 (03) : 283 - 290
  • [40] Microtexture, Microstructure Evolution and Thermal Insulation Performance of Carbon Aerogels with High-Temperature Treatment
    Yang, Haixia
    Huo, Jianchun
    Li, Chunming
    Ye, Feng
    Liu, Jingxiao
    Shi, Fei
    SCIENCE OF ADVANCED MATERIALS, 2019, 11 (12) : 1692 - 1698