Preparation and Performance Evaluation of a Miniature High-Temperature Heat Flux Sensor With Centralized Thermal Insulation Structure

被引:0
|
作者
Li, Xiaofen [1 ,2 ]
Zhang, Lei [1 ,2 ]
Xie, Hao [1 ,2 ]
Shang, Ze [1 ,2 ]
Zhang, Xiangxiang [1 ,2 ]
Qi, Xue [1 ,2 ]
Lu, Meimei [1 ,2 ]
Tan, Qiulin [1 ,2 ]
机构
[1] North Univ China, Sci & Technol Elect Test & Measurement Lab, Taiyuan 030051, Peoples R China
[2] North Univ China, State Key Lab Dynam Measurement Technol, Taiyuan 030051, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermal resistance; Heating systems; Hafnium; Junctions; Temperature measurement; Thermocouples; Surface resistance; Heat flux sensor (HFS); high-temperature environment; miniaturization; screen printing; thermopiles;
D O I
10.1109/TIM.2024.3420362
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The internal hot-end components of aeroengines operate in a high-temperature environment are susceptible to cracks or falling blocks due to thermal fatigue and other effects. The rapid changes in heat flux at these defects can lead to engine failure. We propose a miniaturized sensor capable of monitoring heat flux change in a high-temperature environment. The sensor is based on a thermopile, connected in series with the platinum-10% rhodium/platinum (Pt-Rh10/Pt) thermocouples as the basic unit on a ceramic plate sized 10 x 10 x 1 mm(3). Nanocomposite silicon dioxide is adopted as a thermal insulation material to generate a temperature difference at the hot and cold junctions, which is distributed in the center and results in a thermal voltage output in the millivolt range. The heat flux sensor (HFS) can operate at temperatures up to 1000 degrees C with a good repeatability. The output voltage at a heat flux of 189.6 kW/m2 is 0.4113 mV, and the dynamic response time of HFS is 0.25 s. The screen printing process enables the batch preparation of micro-HFSs for high-temperature device surfaces with small areas.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Thermal Evaluation of High-Temperature Insulation System for liquid-immersed transformer
    Zhang, Xiaojing
    Shen, Shuhang
    Liu, Guodong
    Chen, Rongqin
    Xu, Yang
    Lei, Qingquan
    Li, Xin
    2016 IEEE ELECTRICAL INSULATION CONFERENCE (EIC), 2016, : 272 - 275
  • [22] Fabrication of SiC nanofiber aerogel felt with high-temperature thermal insulation performance
    Li, Jinxia
    Ahmad, Zahoor
    Chen, Jianjun
    Chen, Hao
    Tao, Jiyu
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2024, 44 (04) : 1923 - 1931
  • [23] Numerical Study on Thermal Damage Behavior and Heat Insulation Protection in a High-Temperature Tunnel
    Kang, Fangchao
    Li, Yingchun
    Tang, Chun'an
    Li, Tianjiao
    Wang, Kaikai
    APPLIED SCIENCES-BASEL, 2021, 11 (15):
  • [24] Calibration of high-temperature heat flux sensors
    Stradomskiy, M.V.
    Maksimov, Ye.A.
    Malyarov, V.S.
    Heat transfer. Soviet research, 1988, 20 (04): : 562 - 568
  • [25] Experimental and numerical research on high-temperature thermal insulation performance of lightweight porous ceramic/nanomaterial composite structure
    Ren, H. Y.
    Wu, D. F.
    Wu, W. J.
    Li, J. N.
    Lin, L. J.
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2019, 50 (12) : 1525 - 1536
  • [26] Active thermal insulation for high-temperature chemical plant
    Lyubina, YL
    Suris, AL
    CHEMICAL AND PETROLEUM ENGINEERING, 2002, 38 (3-4) : 111 - 117
  • [27] ANALYSIS OF AN ACTIVE HIGH-TEMPERATURE THERMAL INSULATION SYSTEM
    MARUYAMA, S
    VISKANTA, R
    AIHARA, T
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 1990, 11 (03) : 196 - 203
  • [28] HIGH-TEMPERATURE THERMAL-INSULATION TIZOLIT ARTICLES
    Khabarov, V. N.
    Zuev, A. V.
    REFRACTORIES AND INDUSTRIAL CERAMICS, 2010, 51 (02) : 79 - 82
  • [29] THERMAL PROPERTIES AND APPLICATIONS OF HIGH-TEMPERATURE AIRCRAFT INSULATION
    GREEBLER, P
    JET PROPULSION, 1954, 24 (06): : 374 - 378
  • [30] HIGH-TEMPERATURE MULTI-FOIL THERMAL INSULATION
    PAQUIN, ML
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1968, ED15 (10) : 805 - &