Probabilistic movement primitives based multi-task learning framework

被引:1
|
作者
Yue, Chengfei [1 ]
Gao, Tian [1 ]
Lu, Lang [1 ]
Lin, Tao [2 ]
Wu, Yunhua [3 ]
机构
[1] Harbin Inst Technol, Inst Space Sci & Appl Technol, Shenzhen 518055, Peoples R China
[2] Harbin Inst Technol, Res Ctr Satellite Technol, Harbin 150001, Peoples R China
[3] Nanjing Univ Aeronaut & Astronaut, Sch Astronaut, Nanjing 211100, Peoples R China
关键词
Learning from Demonstration; Conditional Probabilistic Movement Primitives; Learning beyond teaching; Multi-task learning; MOTION;
D O I
10.1016/j.cie.2024.110144
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
With the increasing complexity of industrial production and manufacturing tasks, industrial robots are expected to learn intricate operations from simple actions easily and quickly with adaption to dynamic environment. In this paper, a task-parameterized multi -task learning framework is proposed to facilitate rapid learning of operational skills for industrial robots. In this framework, a conditional Probabilistic Movement Primitives (ProMP) is firstly employed to the single -task learning. Using the conditional probability calculation, the extrapolation issue in Learning from Demonstration (LfD) is addressed, enabling robots to learn beyond teaching. Subsequently, the single -task is extended to multi -task scenario by proposing a multi -task learning approach where each single task executes an extrapolation learning. The learned skill can meet the multiple task requirements through an iterative modulation manner. The effectiveness of the proposed framework is validated through both the simulation and a 7-DoF Franka-Emika robot experiment in a predefined task scenario. Furthermore, the outperformance of the proposed method is demonstrated by comparing with the state -of -art movement primitives based learning method.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Enhancing Learning Capabilities of Movement Primitives under Distributed Probabilistic Framework for Assembly Tasks
    Wang, Likun
    Jia, Shuya
    Wang, Guoyan
    Turner, Alison
    Ratchev, Svetan
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 3832 - 3838
  • [42] Fabric Retrieval Based on Multi-Task Learning
    Xiang, Jun
    Zhang, Ning
    Pan, Ruru
    Gao, Weidong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 1570 - 1582
  • [43] Multi-task Learning Based Skin Segmentation
    Tan, Taizhe
    Shan, Zhenghao
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT III, KSEM 2023, 2023, 14119 : 360 - 369
  • [44] Multi-Task Learning Based Network Embedding
    Wang, Shanfeng
    Wang, Qixiang
    Gong, Maoguo
    FRONTIERS IN NEUROSCIENCE, 2020, 13
  • [45] Clinical Risk Prediction with Temporal Probabilistic Asymmetric Multi-Task Learning
    Nguyen, A. Tuan
    Jeong, Hyewon
    Yang, Eunho
    Hwang, Sung Ju
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 9081 - 9091
  • [46] Graph-based Multi-task Learning
    Li, Ya
    Tian, Xinmei
    2015 IEEE 16TH INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY (ICCT), 2015, : 730 - 733
  • [47] A multi-task learning framework for gas detection and concentration estimation
    Liu, Huixiang
    Li, Qing
    Gu, Yu
    NEUROCOMPUTING, 2020, 416 : 28 - 37
  • [48] Chinese Dialogue Analysis Using Multi-Task Learning Framework
    Zhang, Xuejing
    Lv, Xueqiang
    Zhou, Qiang
    2018 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP), 2018, : 102 - 107
  • [49] MTECC: A Multi-Task Learning Framework for Esophageal Cancer Analysis
    An, Jianpeng
    Li, Wenqi
    Bai, Yunhao
    Chen, Huazhen
    Zhao, Gang
    Cai, Qing
    Gao, Zhongke
    IEEE Transactions on Artificial Intelligence, 2024,
  • [50] A Deep Multi-Task Learning Framework for Brain Tumor Segmentation
    Huang, He
    Yang, Guang
    Zhang, Wenbo
    Xu, Xiaomei
    Yang, Weiji
    Jiang, Weiwei
    Lai, Xiaobo
    FRONTIERS IN ONCOLOGY, 2021, 11