Multi-task Learning Based Skin Segmentation

被引:0
|
作者
Tan, Taizhe [1 ,2 ]
Shan, Zhenghao [1 ]
机构
[1] Guangdong Univ Technol, Sch Comp Sci & Technol, Guangzhou 510006, Peoples R China
[2] Heyuan Bay Area Digital Econ Technol Innovat Ctr, Heyuan 517001, Peoples R China
关键词
Skin segmentation; query-based; multi-task learning; encoder-decoder; deep learning;
D O I
10.1007/978-3-031-40289-0_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Skin segmentation is a critical task in computer vision that has diverse applications in several fields such as biometrics, medical imaging, and video surveillance. Despite its importance, the acquisition of high-quality data remains a significant challenge in skin segmentation research. In this paper, we propose a novel skin segmentation algorithm for single-person images by utilizing a dual-task neural network built on the multi-task learning framework. Specifically, the algorithm employs an encoder-decoder architecture consisting of a shared backbone, two dynamic encoders, and a decoder. The dynamic encoders use dynamic convolution to extract more spatial location information, while the decoder utilizes a query-based dual-task approach that allows each task to utilize the information generated by the other one efficiently. The experimental results indicate that the proposed skin segmentation algorithm outperforms or matches the current state-of-the-art techniques on the benchmark test set.
引用
下载
收藏
页码:360 / 369
页数:10
相关论文
共 50 条
  • [1] Multi-task learning for gland segmentation
    Rezazadeh, Iman
    Duygulu, Pinar
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (01) : 1 - 9
  • [2] Multi-Task Learning for Subspace Segmentation
    Wang, Yu
    Wipf, David
    Ling, Qing
    Chen, Wei
    Wassell, Ian
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1209 - 1217
  • [3] Multi-task learning for gland segmentation
    Iman Rezazadeh
    Pinar Duygulu
    Signal, Image and Video Processing, 2023, 17 : 1 - 9
  • [4] A Novel Multi-Task Learning Network Based on Melanoma Segmentation and Classification with Skin Lesion Images
    Alenezi, Fayadh
    Armghan, Ammar
    Polat, Kemal
    DIAGNOSTICS, 2023, 13 (02)
  • [5] Multi-task Learning for Brain Tumor Segmentation
    Weninger, Leon
    Liu, Qianyu
    Merhof, Dorit
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT I, 2020, 11992 : 327 - 337
  • [6] Multi-task learning framework for echocardiography segmentation
    Monkam, Patrice
    Jin, Songbai
    Lu, Wenkai
    2022 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS), 2022,
  • [7] A Multi-task Framework for Skin Lesion Detection and Segmentation
    Vesal, Sulaiman
    Patil, Shreyas Malakarjun
    Ravikumar, Nishant
    Maier, Andreas K.
    OR 2.0 CONTEXT-AWARE OPERATING THEATERS, COMPUTER ASSISTED ROBOTIC ENDOSCOPY, CLINICAL IMAGE-BASED PROCEDURES, AND SKIN IMAGE ANALYSIS, OR 2.0 2018, 2018, 11041 : 285 - 293
  • [8] Interdependent Multi-task Learning for Simultaneous Segmentation and Detection
    Reginthala, Mahesh
    Iwahori, Yuji
    Bhuyan, M. K.
    Hayashi, Yoshitsugu
    Achariyaviriya, Witsarut
    Kijsirikul, Boonserm
    ICPRAM: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, 2020, : 167 - 174
  • [9] Multi-task Federated Learning for Heterogeneous Pancreas Segmentation
    Shen, Chen
    Wang, Pochuan
    Roth, Holger R.
    Yang, Dong
    Xu, Daguang
    Oda, Masahiro
    Wang, Weichung
    Fuh, Chiou-Shann
    Chen, Po-Ting
    Liu, Kao-Lang
    Liao, Wei-Chih
    Mori, Kensaku
    CLINICAL IMAGE-BASED PROCEDURES, DISTRIBUTED AND COLLABORATIVE LEARNING, ARTIFICIAL INTELLIGENCE FOR COMBATING COVID-19 AND SECURE AND PRIVACY-PRESERVING MACHINE LEARNING, CLIP 2021, DCL 2021, LL-COVID19 2021, PPML 2021, 2021, 12969 : 101 - 110
  • [10] Multi-Task Learning and Multimodal Fusion for Road Segmentation
    Cheng, Bowen
    Tian, Miaomiao
    Jiang, Shuai
    Liu, Weiwei
    Pang, Yalong
    IEEE ACCESS, 2023, 11 : 18947 - 18959