On the Sharp Makai Inequality

被引:0
|
作者
Prinari, Francesca [1 ]
Zagati, Anna Chiara [2 ]
机构
[1] Univ Pisa, Dip Sci Agr Alimentari & Agroambientali, Pisa, Italy
[2] Univ Parma, Dip Sci Matemat Fis & Informat, Parma, Italy
关键词
Poincar & eacute; -Sobolev constant; Laplacian; inradius; distance function; PRINCIPAL FREQUENCIES; TORSIONAL RIGIDITY; HARDY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On a convex bounded open set, we prove that Poincar & eacute;-Sobolev constants for functions vanishing at the boundary can be bounded from below in terms of the norm of the distance function in a suitable Lebesgue space. This generalizes a result shown, in the planar case, by E. Makai, for the torsional rigidity. In addition, we compare the sharp Makai constants obtained in the class of convex sets with the optimal constants defined in other classes of open sets. Finally, an alternative proof of the Hersch-Protter inequality for convex sets is given.
引用
收藏
页码:709 / 732
页数:24
相关论文
共 50 条
  • [41] A sharp Sobolev inequality on Riemannian manifolds
    Li, YY
    Ricciardi, T
    COMPTES RENDUS MATHEMATIQUE, 2002, 335 (06) : 519 - 524
  • [42] Sharp remainder of a critical Hardy inequality
    Norisuke Ioku
    Michinori Ishiwata
    Tohru Ozawa
    Archiv der Mathematik, 2016, 106 : 65 - 71
  • [43] The sharp quantitative Euclidean concentration inequality
    Figalli, Alessio
    Maggi, Francesco
    Mooney, Connor
    CAMBRIDGE JOURNAL OF MATHEMATICS, 2018, 6 (01) : 59 - 87
  • [44] A sharp multidimensional Bergh type inequality
    Pecaric, J
    Peric, I
    Persson, LE
    MATHEMATISCHE NACHRICHTEN, 2001, 228 : 155 - 162
  • [45] Kruskal's uniqueness inequality is sharp
    Derksen, Harm
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (02) : 708 - 712
  • [46] Double logarithmic inequality with a sharp constant
    Ibrahim, S.
    Majdoub, M.
    Masmoudi, N.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (01) : 87 - 97
  • [47] A Sharp Remez Inequality for Trigonometric Polynomials
    E. Nursultanov
    S. Tikhonov
    Constructive Approximation, 2013, 38 : 101 - 132
  • [48] A sharp relative isoperimetric inequality for the square
    Brezis, Haim
    Bruckstein, Alfred
    COMPTES RENDUS MATHEMATIQUE, 2021, 359 (09) : 1191 - 1199
  • [49] ON A SHARP INEQUALITY CONCERNING THE DIRICHLET INTEGRAL
    CHANG, SYA
    MARSHALL, DE
    AMERICAN JOURNAL OF MATHEMATICS, 1985, 107 (05) : 1015 - 1033
  • [50] A sharp inequality for martingales and its applications
    Li, Bainian
    Zhang, Kongsheng
    Wu, Libin
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (08) : 1260 - 1266