On the Sharp Makai Inequality

被引:0
|
作者
Prinari, Francesca [1 ]
Zagati, Anna Chiara [2 ]
机构
[1] Univ Pisa, Dip Sci Agr Alimentari & Agroambientali, Pisa, Italy
[2] Univ Parma, Dip Sci Matemat Fis & Informat, Parma, Italy
关键词
Poincar & eacute; -Sobolev constant; Laplacian; inradius; distance function; PRINCIPAL FREQUENCIES; TORSIONAL RIGIDITY; HARDY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On a convex bounded open set, we prove that Poincar & eacute;-Sobolev constants for functions vanishing at the boundary can be bounded from below in terms of the norm of the distance function in a suitable Lebesgue space. This generalizes a result shown, in the planar case, by E. Makai, for the torsional rigidity. In addition, we compare the sharp Makai constants obtained in the class of convex sets with the optimal constants defined in other classes of open sets. Finally, an alternative proof of the Hersch-Protter inequality for convex sets is given.
引用
收藏
页码:709 / 732
页数:24
相关论文
共 50 条
  • [21] A sharp inequality for Sobolev functions
    Girao, PM
    COMPTES RENDUS MATHEMATIQUE, 2002, 334 (02) : 105 - 108
  • [22] Sharp constant in a Sobolev inequality
    Wang, Xu-Jia
    Water S.A., 1993, 19 (01)
  • [23] A sharp Schwarz inequality on the boundary
    Osserman, R
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (12) : 3513 - 3517
  • [24] A sharp trigonometric double inequality
    Kim, Yongbeom
    Lee, Tuo Yeong
    Vengat, S.
    Sim, Hui Xiang
    Tai, Jay Kin Heng
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2021, 98 (1-2): : 231 - 242
  • [25] A Sharp Inequality for a Trigonometric Sum
    Horst Alzer
    Stamatis Koumandos
    Mediterranean Journal of Mathematics, 2013, 10 : 313 - 320
  • [26] A SHARP INEQUALITY FOR THE SQUARE FUNCTION
    WILSON, JM
    DUKE MATHEMATICAL JOURNAL, 1987, 55 (04) : 879 - 887
  • [27] A Sharp Rellich Inequality on the Sphere
    Yin, Songting
    MATHEMATICS, 2018, 6 (12):
  • [28] A Sharp Inequality for a Trigonometric Sum
    Alzer, Horst
    Koumandos, Stamatis
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2013, 10 (01) : 313 - 320
  • [29] A sharp isoperimetric inequality in the plane
    Alvino, Angelo
    Ferone, Vincenzo
    Nitsch, Carlo
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (01) : 185 - 206
  • [30] How sharp is the Jensen inequality?
    Danilo Costarelli
    Renato Spigler
    Journal of Inequalities and Applications, 2015