SEI/dead Li-turning capacity loss for high-performance anode-free solid-state lithium batteries

被引:3
|
作者
Yin, Qianwen [1 ,2 ]
Li, Tianyu [1 ,3 ]
Zhang, Hongzhang [1 ]
Zhong, Guiming [4 ]
Yang, Xiaofei [1 ,3 ]
Li, Xianfeng [1 ,3 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Div Energy Storage, Dalian Natl Lab Clean Energy, Dalian 116023, Liaoning, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Dalian Inst Chem Phys, Key Lab Long Durat & Large Scale Energy Storage, Dalian 116023, Liaoning, Peoples R China
[4] Chinese Acad Sci, Dalian Inst Chem Phys, Lab Adv Spectro Electrochem & Lithium Ion Batterie, Dalian Natl Lab Clean Energy, Dalian 116023, Liaoning, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Solid-state lithium batteries; Solid-state NMR; Anode; -free; SEI; Dead Li; CONDUCTING POLYMER ELECTROLYTES; DENSITY-FUNCTIONAL THEORY; RELAXATION-TIMES; METAL BATTERIES; DEPOSITION; DESIGN;
D O I
10.1016/j.jechem.2024.04.033
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Anode-free solid-state lithium metal batteries (AF-SSLBs) have the potential to deliver higher energy density and improved safety beyond lithium-metal batteries. However, the unclear mechanism for the fast capacity decay in AF-SSLBs, either determined by dead Li or solid electrolyte interface (SEI), limits the proposal of effective strategies to prolong cycling life. To clarify the underlying mechanism, herein, the evolution of SEI and dead Li is quantitatively analyzed by a solid-state nuclear magnetic resonance (ssNMR) technology in a typical LiPF6-based polymer electrolyte. The results show that the initial capacity loss is attributed to the formation of SEI, while the dead Li dominates the following capacity loss and the growth rate is 0.141 mA h cm-2 cycle-1. To reduce the active Li loss, the combination of inorganic-rich SEI and self-healing electrostatic shield effect is proposed to improve the reversibility of Li deposition/dissolution behavior, which reduces the capacity loss rate for the initial SEI and following dead Li generation by 2.3 and 20.1 folds, respectively. As a result, the initial Coulombic efficiency (ICE) and stable CE increase by 15.1% and 15.3% in Li-Cu cells, which guides the rational design of high-performance AF-SSLBs. (c) 2023 Published by ELSEVIER B.V. and Science Press on behalf of Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences.
引用
收藏
页码:145 / 152
页数:8
相关论文
共 50 条
  • [31] Structural and electrochemical evolution of alloy interfacial layers in anode-free solid-state batteries
    Sandoval, Stephanie Elizabeth
    Lewis, John A.
    Vishnugopi, Bairav S.
    Nelson, Douglas Lars
    Schneider, Matthew M.
    Cortes, Francisco Javier Quintero
    Matthews, Christopher M.
    Watt, John
    Tian, Mengkun
    Shevchenko, Pavel
    Mukherjee, Partha P.
    McDowell, Matthew T.
    JOULE, 2023, 7 (09) : 2054 - +
  • [32] Ferroelectric interface for efficient sodium metal cycling in anode-free solid-state batteries
    Sun, Chen
    Li, Yang
    Sun, Zheng
    Yuan, Xuanyi
    Jin, Haibo
    Zhao, Yongjie
    MATERIALS TODAY, 2024, 80 : 395 - 405
  • [33] Operando Analysis of Interphase Dynamics in Anode-Free Solid-State Batteries with Sulfide Electrolytes
    Davis, Andrew L.
    Kazyak, Eric
    Liao, Daniel W.
    Wood, Kevin N.
    Dasgupta, Neil P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (07)
  • [34] Electroanalytical Exploration of Li Loss at the Solid Electrolyte-Anode Interface in Anode-Free Batteries with Polymer Electrolytes
    Sahore, Ritu
    Mayer, Alexander
    Steinle, Dominik
    Counihan, Michael J.
    Chen, Xi Chelsea
    Tepavcevic, Sanja
    Bresser, Dominic
    Westover, Andrew S.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (05)
  • [35] Mechanism of lithium dendrite growth on iron surfaces toward high-performance and safe anode-free lithium metal batteries
    Liu, Songchang
    Li, Nannan
    Tang, Yingqi
    Mukamel, Shaul
    Lee, Jin Yong
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (16) : 9886 - 9895
  • [36] Microrod Patterned Lithium Metal Surface for High-performance Solid-state Lithium Batteries
    Zhang, Xiang
    Sun, Chunwen
    CHEMISTRY LETTERS, 2022, 51 (08) : 891 - 893
  • [37] Current-Dependent Lithium Metal Growth Modes in "Anode-Free" Solid-State Batteries at the Cu|LLZO Interface
    Fuchs, Till
    Becker, Juri
    Haslam, Catherine G.
    Lerch, Christian
    Sakamoto, Jeff
    Richter, Felix H.
    Janek, Juergen
    ADVANCED ENERGY MATERIALS, 2023, 13 (01)
  • [38] Designing Lithium Argyrodite Solid-State Electrolytes for High-Performance All-Solid-State Lithium Batteries
    Li, Chongxing
    Zhang, Shuxian
    Miao, Xianguang
    Wang, Cong
    Wang, Chengxiang
    Zhang, Zhiwei
    Wang, Rutao
    Yin, Longwei
    BATTERIES & SUPERCAPS, 2022, 5 (03)
  • [39] Enhancing Lithium Stripping Efficiency in Anode-Free Solid-State Batteries through Self-Regulated Internal Pressure
    Cao, Daxian
    Ji, Tongtai
    Wei, Zhengxuan
    Liang, Wentao
    Bai, Ruobing
    Burch, Kenneth S.
    Geiwitz, Michael
    Zhu, Hongli
    NANO LETTERS, 2023, 23 (20) : 9392 - 9398
  • [40] Combination of solid polymer electrolytes and lithiophilic zinc for improved plating/stripping efficiency in anode-free lithium metal solid-state batteries
    Bertoli, Luca
    Bloch, Sophia
    Andersson, Edvin
    Magagnin, Luca
    Brandell, Daniel
    Mindemark, Jonas
    ELECTROCHIMICA ACTA, 2023, 464