SEI/dead Li-turning capacity loss for high-performance anode-free solid-state lithium batteries

被引:3
|
作者
Yin, Qianwen [1 ,2 ]
Li, Tianyu [1 ,3 ]
Zhang, Hongzhang [1 ]
Zhong, Guiming [4 ]
Yang, Xiaofei [1 ,3 ]
Li, Xianfeng [1 ,3 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Div Energy Storage, Dalian Natl Lab Clean Energy, Dalian 116023, Liaoning, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Dalian Inst Chem Phys, Key Lab Long Durat & Large Scale Energy Storage, Dalian 116023, Liaoning, Peoples R China
[4] Chinese Acad Sci, Dalian Inst Chem Phys, Lab Adv Spectro Electrochem & Lithium Ion Batterie, Dalian Natl Lab Clean Energy, Dalian 116023, Liaoning, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Solid-state lithium batteries; Solid-state NMR; Anode; -free; SEI; Dead Li; CONDUCTING POLYMER ELECTROLYTES; DENSITY-FUNCTIONAL THEORY; RELAXATION-TIMES; METAL BATTERIES; DEPOSITION; DESIGN;
D O I
10.1016/j.jechem.2024.04.033
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Anode-free solid-state lithium metal batteries (AF-SSLBs) have the potential to deliver higher energy density and improved safety beyond lithium-metal batteries. However, the unclear mechanism for the fast capacity decay in AF-SSLBs, either determined by dead Li or solid electrolyte interface (SEI), limits the proposal of effective strategies to prolong cycling life. To clarify the underlying mechanism, herein, the evolution of SEI and dead Li is quantitatively analyzed by a solid-state nuclear magnetic resonance (ssNMR) technology in a typical LiPF6-based polymer electrolyte. The results show that the initial capacity loss is attributed to the formation of SEI, while the dead Li dominates the following capacity loss and the growth rate is 0.141 mA h cm-2 cycle-1. To reduce the active Li loss, the combination of inorganic-rich SEI and self-healing electrostatic shield effect is proposed to improve the reversibility of Li deposition/dissolution behavior, which reduces the capacity loss rate for the initial SEI and following dead Li generation by 2.3 and 20.1 folds, respectively. As a result, the initial Coulombic efficiency (ICE) and stable CE increase by 15.1% and 15.3% in Li-Cu cells, which guides the rational design of high-performance AF-SSLBs. (c) 2023 Published by ELSEVIER B.V. and Science Press on behalf of Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences.
引用
收藏
页码:145 / 152
页数:8
相关论文
共 50 条
  • [21] From Lithium-Metal toward Anode-Free Solid-State Batteries: Current Developments, Issues, and Challenges
    Heubner, Christian
    Maletti, Sebastian
    Auer, Henry
    Huettl, Juliane
    Voigt, Karsten
    Lohrberg, Oliver
    Nikolowski, Kristian
    Partsch, Mareike
    Michaelis, Alexander
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (51)
  • [22] Li Stripping Behavior of Anode-Free Solid-State Batteries Under Intermittent-Current Discharge Conditions
    Lee, Kiwoong
    Sakamoto, Jeff
    ADVANCED ENERGY MATERIALS, 2024, 14 (17)
  • [23] Influence of Au, Pt, and C Seed Layers on Lithium Nucleation Dynamics for Anode-Free Solid-State Batteries
    Mueller, Andre
    Paravicini, Luis
    Morzy, Jedrzej
    Krause, Maximilian
    Casella, Joel
    Osenciat, Nicolas
    Futscher, Moritz H.
    Romanyuk, Yaroslav E.
    ACS APPLIED MATERIALS & INTERFACES, 2023, 16 (01) : 695 - 703
  • [24] Imaging the microstructure of lithium and sodium metal in anode-free solid-state batteries using electron backscatter diffraction
    Fuchs, Till
    Ortmann, Till
    Becker, Juri
    Haslam, Catherine G.
    Ziegler, Maya
    Singh, Vipin Kumar
    Rohnke, Marcus
    Mogwitz, Boris
    Peppler, Klaus
    Nazar, Linda F.
    Sakamoto, Jeff
    Janek, Juergen
    NATURE MATERIALS, 2024, 23 (12) : 1678 - 1685
  • [25] Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries
    Liu, Zeyu
    Huang, Wenze
    Xiao, Yang
    Zhang, Jundong
    Kong, Weijin
    Wu, Peng
    Zhao, Chenzi
    Chen, Aibing
    Zhang, Qiang
    ACTA PHYSICO-CHIMICA SINICA, 2024, 40 (03)
  • [26] Locally Fluorinated Electrolyte Medium Layer for High-Performance Anode-Free Li-Metal Batteries
    Ye, Xue
    Wu, Jing
    Liang, Jianneng
    Sun, Yipeng
    Ren, Xiangzhong
    Ouyang, Xiaoping
    Wu, Dazhuan
    Li, Yongliang
    Zhang, Lei
    Hu, Jiangtao
    Zhang, Qianling
    Liu, Jianhong
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (48) : 53788 - 53797
  • [27] Solid-state polymer electrolytes for high-performance lithium metal batteries
    Choudhury, Snehashis
    Stalin, Sanjuna
    Vu, Duylinh
    Warren, Alexander
    Deng, Yue
    Biswal, Prayag
    Archer, Lynden A.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [28] High-Performance Lithium Solid-State Batteries Operating at Elevated Temperature
    Wang, Hui
    Ma, Cheng
    Chi, Miaofang
    Liang, Chengdu
    ADVANCED MATERIALS INTERFACES, 2015, 2 (17):
  • [29] Solid-state polymer electrolytes for high-performance lithium metal batteries
    Snehashis Choudhury
    Sanjuna Stalin
    Duylinh Vu
    Alexander Warren
    Yue Deng
    Prayag Biswal
    Lynden A. Archer
    Nature Communications, 10
  • [30] High-Performance Anode-Free Li-S Batteries with an Integrated Li2S-Electrocatalyst Cathode
    He, Jiarui
    Bhargav, Amruth
    Manthiram, Arumugam
    ACS ENERGY LETTERS, 2022, 7 (02) : 583 - 590