SEI/dead Li-turning capacity loss for high-performance anode-free solid-state lithium batteries

被引:3
|
作者
Yin, Qianwen [1 ,2 ]
Li, Tianyu [1 ,3 ]
Zhang, Hongzhang [1 ]
Zhong, Guiming [4 ]
Yang, Xiaofei [1 ,3 ]
Li, Xianfeng [1 ,3 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Div Energy Storage, Dalian Natl Lab Clean Energy, Dalian 116023, Liaoning, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Dalian Inst Chem Phys, Key Lab Long Durat & Large Scale Energy Storage, Dalian 116023, Liaoning, Peoples R China
[4] Chinese Acad Sci, Dalian Inst Chem Phys, Lab Adv Spectro Electrochem & Lithium Ion Batterie, Dalian Natl Lab Clean Energy, Dalian 116023, Liaoning, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Solid-state lithium batteries; Solid-state NMR; Anode; -free; SEI; Dead Li; CONDUCTING POLYMER ELECTROLYTES; DENSITY-FUNCTIONAL THEORY; RELAXATION-TIMES; METAL BATTERIES; DEPOSITION; DESIGN;
D O I
10.1016/j.jechem.2024.04.033
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Anode-free solid-state lithium metal batteries (AF-SSLBs) have the potential to deliver higher energy density and improved safety beyond lithium-metal batteries. However, the unclear mechanism for the fast capacity decay in AF-SSLBs, either determined by dead Li or solid electrolyte interface (SEI), limits the proposal of effective strategies to prolong cycling life. To clarify the underlying mechanism, herein, the evolution of SEI and dead Li is quantitatively analyzed by a solid-state nuclear magnetic resonance (ssNMR) technology in a typical LiPF6-based polymer electrolyte. The results show that the initial capacity loss is attributed to the formation of SEI, while the dead Li dominates the following capacity loss and the growth rate is 0.141 mA h cm-2 cycle-1. To reduce the active Li loss, the combination of inorganic-rich SEI and self-healing electrostatic shield effect is proposed to improve the reversibility of Li deposition/dissolution behavior, which reduces the capacity loss rate for the initial SEI and following dead Li generation by 2.3 and 20.1 folds, respectively. As a result, the initial Coulombic efficiency (ICE) and stable CE increase by 15.1% and 15.3% in Li-Cu cells, which guides the rational design of high-performance AF-SSLBs. (c) 2023 Published by ELSEVIER B.V. and Science Press on behalf of Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences.
引用
收藏
页码:145 / 152
页数:8
相关论文
共 50 条
  • [1] SEI/dead Li-turning capacity loss for high-performance anode-free solid-state lithium batteries
    Qianwen Yin
    Tianyu Li
    Hongzhang Zhang
    Guiming Zhong
    Xiaofei Yang
    Xianfeng Li
    Journal of Energy Chemistry, 2024, 96 (09) : 145 - 152
  • [2] Anode-Free Solid-State Lithium Batteries: A Review
    Huang, Wen-Ze
    Zhao, Chen-Zi
    Wu, Peng
    Yuan, Hong
    Feng, Wei-Er
    Liu, Ze-Yu
    Lu, Yang
    Sun, Shuo
    Fu, Zhong-Heng
    Hu, Jiang-Kui
    Yang, Shi-Jie
    Huang, Jia-Qi
    Zhang, Qiang
    ADVANCED ENERGY MATERIALS, 2022, 12 (26)
  • [3] Reactivating Dead Li by Shuttle Effect for High-Performance Anode-Free Li Metal Batteries
    Chen, Jie
    He, Bin
    Cheng, Zexiao
    Rao, Zhixiang
    He, Danqi
    Liu, Dezhong
    Li, Xiang
    Yuan, Lixia
    Huang, Yunhui
    Li, Zhen
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (12)
  • [4] Lithium Plating and Stripping: Toward Anode-Free Solid-State Batteries
    Zor, Ceren
    Turrell, Stephen J.
    Uyanik, Mehmet Sinan
    Afyon, Semih
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2024, 5 (08):
  • [5] Tellurium Nanowires for Lithium-Metal Anode Stabilization in High-Performance Anode-Free Li-S Batteries
    Sul, Hyunki
    He, Jiarui
    Manthiram, Arumugam
    SMALL SCIENCE, 2023, 3 (10):
  • [6] A Tailored Interface Design for Anode-Free Solid-State Batteries
    Wen, Jiayun
    Wang, Tengrui
    Wang, Chao
    Dai, Yiming
    Song, Zhenyou
    Liu, Xuyang
    Yu, Qian
    Zheng, Xueying
    Ma, Jiwei
    Luo, Wei
    Huang, Yunhui
    ADVANCED MATERIALS, 2024, 36 (06)
  • [7] Recent Advances in Anode-free Solid-state Batteries: A Review
    Sun, Seho
    Su, Laisuo
    Kim, Seokjun
    Lee, Dongsoo
    Choi, Junghyun
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2025, 16 (01) : 1 - 14
  • [8] Developing High-Performance Anode-Free Lithium Batteries: Challenges, Strategies, and Opportunities
    Zhou, Yiming
    Wang, Peiyu
    Wang, Ke
    Fang, Xiande
    Li, Wei
    Nai, Jianwei
    Liu, Yujing
    Wang, Yao
    Zou, Shihui
    Yuan, Huadong
    Tao, Xinyong
    Luo, Jianmin
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [9] Solid-State Prelithiation Enables High-Performance Li-Al-H Anode for Solid-State Batteries
    Pang, Yuepeng
    Wang, Xitong
    Shi, Xinxin
    Xu, Fen
    Sun, Lixian
    Yang, Junhe
    Zheng, Shiyou
    ADVANCED ENERGY MATERIALS, 2020, 10 (12)
  • [10] "Dead Lithium" Formation and Mitigation Strategies in Anode-Free Li-Metal Batteries
    Abdollahifar, Mozaffar
    Paolella, Andrea
    BATTERIES & SUPERCAPS, 2025, 8 (03)